These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 24489881)
1. Identification and validation of miRNAs associated with the resistance of maize (Zea mays L.) to Exserohilum turcicum. Wu F; Shu J; Jin W PLoS One; 2014; 9(1):e87251. PubMed ID: 24489881 [TBL] [Abstract][Full Text] [Related]
2. Alleles of a wall-associated kinase gene account for three of the major northern corn leaf blight resistance loci in maize. Yang P; Scheuermann D; Kessel B; Koller T; Greenwood JR; Hurni S; Herren G; Zhou S; Marande W; Wicker T; Krattinger SG; Ouzunova M; Keller B Plant J; 2021 Apr; 106(2):526-535. PubMed ID: 33533097 [TBL] [Abstract][Full Text] [Related]
3. Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress. Aydinoglu F Planta; 2020 Jan; 251(2):38. PubMed ID: 31907623 [TBL] [Abstract][Full Text] [Related]
4. Conserved defense responses between maize and sorghum to Exserohilum turcicum. Zhang X; Fernandes SB; Kaiser C; Adhikari P; Brown PJ; Mideros SX; Jamann TM BMC Plant Biol; 2020 Feb; 20(1):67. PubMed ID: 32041528 [TBL] [Abstract][Full Text] [Related]
5. Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313. Aydinoglu F; Lucas SJ Gene; 2019 Mar; 690():57-67. PubMed ID: 30597233 [TBL] [Abstract][Full Text] [Related]
6. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply. Yang Z; Wang Z; Yang C; Yang Z; Li H; Wu Y Genes Genomics; 2019 Oct; 41(10):1183-1194. PubMed ID: 31313105 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. Xu Z; Zhong S; Li X; Li W; Rothstein SJ; Zhang S; Bi Y; Xie C PLoS One; 2011; 6(11):e28009. PubMed ID: 22132192 [TBL] [Abstract][Full Text] [Related]
8. Photosynthetic Costs and Impact on Epidemiological Parameters Associated with Navarro BL; Streit S; Nogueira Júnior AF; von Tiedemann A Phytopathology; 2024 Apr; 114(4):760-769. PubMed ID: 37889164 [TBL] [Abstract][Full Text] [Related]
9. Computational identification of maize miRNA and their gene targets involved in biotic and abiotic stresses. Kaur K; Duhan N; Singh J; Kaur G; Vikal Y J Biosci; 2020; 45():. PubMed ID: 33184248 [TBL] [Abstract][Full Text] [Related]
10. Mapping of HtNB, a gene conferring non-lesion resistance before heading to Exserohilum turcicum (Pass.), in a maize inbred line derived from the Indonesian variety Bramadi. Wang H; Xiao ZX; Wang FG; Xiao YN; Zhao JR; Zheng YL; Qiu FZ Genet Mol Res; 2012 Aug; 11(3):2523-33. PubMed ID: 22869072 [TBL] [Abstract][Full Text] [Related]
11. Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Zhang Z; Wei L; Zou X; Tao Y; Liu Z; Zheng Y Ann Bot; 2008 Oct; 102(4):509-19. PubMed ID: 18669574 [TBL] [Abstract][Full Text] [Related]
12. Development of Loop-Mediated Isothermal Amplification Assays for the Rapid and Accurate Diagnosis of Wang Z; Guo L; Tan X; Deng J; Gong S; Li D; Zhang J; Ruan C; Sun W; Peng Z; Hu Y Plant Dis; 2024 Jun; 108(6):1461-1469. PubMed ID: 38240714 [TBL] [Abstract][Full Text] [Related]
13. Influence of crop residues, matric potential and temperature on growth of Exserohilum turcicum an emerging maize pathogen in Argentina. Montemarani A; Sartori M; Nesci A; Etcheverry M; Barros G Lett Appl Microbiol; 2018 Dec; 67(6):614-619. PubMed ID: 30229965 [TBL] [Abstract][Full Text] [Related]
14. Variation in the morphology and effector profiles of Exserohilum turcicum isolates associated with the Northern Corn Leaf Blight of maize in Nigeria. Bankole FA; Badu-Apraku B; Salami AO; Falade TDO; Bandyopadhyay R; Ortega-Beltran A BMC Plant Biol; 2023 Aug; 23(1):386. PubMed ID: 37563555 [TBL] [Abstract][Full Text] [Related]
15. Expression profile analysis of maize in response to Setosphaeria turcica. Shi F; Zhang Y; Wang K; Meng Q; Liu X; Ma L; Li Y; Liu J; Ma L Gene; 2018 Jun; 659():100-108. PubMed ID: 29548860 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize. Ding J; Ali F; Chen G; Li H; Mahuku G; Yang N; Narro L; Magorokosho C; Makumbi D; Yan J BMC Plant Biol; 2015 Aug; 15():206. PubMed ID: 26289207 [TBL] [Abstract][Full Text] [Related]
17. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background. Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720 [TBL] [Abstract][Full Text] [Related]
18. Comparative proteomic analysis reveals insights into the dynamic responses of maize (Zea mays L.) to Setosphaeria turcica infection. Liu Y; Gong X; Zhou Q; Liu Y; Liu Z; Han J; Dong J; Gu S Plant Sci; 2021 Mar; 304():110811. PubMed ID: 33568308 [TBL] [Abstract][Full Text] [Related]
19. MicroRNAs Are Involved in Maize Immunity Against Fusarium verticillioides Ear Rot. Zhou Z; Cao Y; Li T; Wang X; Chen J; He H; Yao W; Wu J; Zhang H Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):241-255. PubMed ID: 32531477 [TBL] [Abstract][Full Text] [Related]
20. Efficacy of epiphytic bacteria to prevent northern leaf blight caused by Exserohilum turcicum in maize. Sartori M; Nesci A; García J; Passone MA; Montemarani A; Etcheverry M Rev Argent Microbiol; 2017; 49(1):75-82. PubMed ID: 28188093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]