These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24490134)

  • 41. Groucho/transducin-like enhancer of split (TLE) family members interact with the yeast transcriptional co-repressor SSN6 and mammalian SSN6-related proteins: implications for evolutionary conservation of transcription repression mechanisms.
    Grbavec D; Lo R; Liu Y; Greenfield A; Stifani S
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):13-7. PubMed ID: 9854018
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A complex composed of tup1 and ssn6 represses transcription in vitro.
    Redd MJ; Arnaud MB; Johnson AD
    J Biol Chem; 1997 Apr; 272(17):11193-7. PubMed ID: 9111019
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ssn6-Tup1 is a general repressor of transcription in yeast.
    Keleher CA; Redd MJ; Schultz J; Carlson M; Johnson AD
    Cell; 1992 Feb; 68(4):709-19. PubMed ID: 1739976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of the N-terminal domain of the yeast transcriptional repressor Tup1. Proposal for an association model of the repressor complex Tup1 x Ssn6.
    Jabet C; Sprague ER; VanDemark AP; Wolberger C
    J Biol Chem; 2000 Mar; 275(12):9011-8. PubMed ID: 10722750
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ssn6-Tup1 global transcriptional co-repressor: Role of the N-terminal glutamine-rich region of Ssn6.
    Tartas A; Zarkadas C; Palaiomylitou M; Gounalaki N; Tzamarias D; Vlassi M
    PLoS One; 2017; 12(10):e0186363. PubMed ID: 29053708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.
    Papamichos-Chronakis M; Gligoris T; Tzamarias D
    EMBO Rep; 2004 Apr; 5(4):368-72. PubMed ID: 15031717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits.
    Varanasi US; Klis M; Mikesell PB; Trumbly RJ
    Mol Cell Biol; 1996 Dec; 16(12):6707-14. PubMed ID: 8943325
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways.
    Tomás-Cobos L; Casadomé L; Mas G; Sanz P; Posas F
    J Biol Chem; 2004 May; 279(21):22010-9. PubMed ID: 15014083
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene.
    Tomás-Cobos L; Sanz P
    Biochem J; 2002 Dec; 368(Pt 2):657-63. PubMed ID: 12220226
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes.
    Márquez JA; Pascual-Ahuir A; Proft M; Serrano R
    EMBO J; 1998 May; 17(9):2543-53. PubMed ID: 9564037
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae.
    Pasula S; Jouandot D; Kim JH
    FEBS Lett; 2007 Jul; 581(17):3230-4. PubMed ID: 17586499
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex.
    Tzamarias D; Struhl K
    Nature; 1994 Jun; 369(6483):758-61. PubMed ID: 8008070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress.
    Proft M; Struhl K
    Mol Cell; 2002 Jun; 9(6):1307-17. PubMed ID: 12086627
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic characterization of rbt mutants that enhance basal transcription from core promoters in Saccharomyces cerevisiae.
    Kunoh T; Sakuno T; Furukawa T; Kaneko Y; Harashima S
    J Biochem; 2000 Oct; 128(4):575-84. PubMed ID: 11011139
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast.
    Sprague ER; Redd MJ; Johnson AD; Wolberger C
    EMBO J; 2000 Jun; 19(12):3016-27. PubMed ID: 10856245
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress.
    Kobayashi Y; Inai T; Mizunuma M; Okada I; Shitamukai A; Hirata D; Miyakawa T
    Biochem Biophys Res Commun; 2008 Mar; 368(1):50-5. PubMed ID: 18201562
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4.
    Edmondson DG; Smith MM; Roth SY
    Genes Dev; 1996 May; 10(10):1247-59. PubMed ID: 8675011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigating the structural stability of the Tup1-interaction domain of Ssn6: evidence for a conformational change on the complex.
    Palaiomylitou M; Tartas A; Vlachakis D; Tzamarias D; Vlassi M
    Proteins; 2008 Jan; 70(1):72-82. PubMed ID: 17634984
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Specialized sugar sensing in diverse fungi.
    Brown V; Sabina J; Johnston M
    Curr Biol; 2009 Mar; 19(5):436-41. PubMed ID: 19249212
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains.
    Lin X; Yu AQ; Zhang CY; Pi L; Bai XW; Xiao DG
    Microb Cell Fact; 2017 Nov; 16(1):194. PubMed ID: 29121937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.