These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 24490660)
1. Aldehydes and ketones formation: copper-catalyzed aerobic oxidative decarboxylation of phenylacetic acids and α-hydroxyphenylacetic acids. Feng Q; Song Q J Org Chem; 2014 Feb; 79(4):1867-71. PubMed ID: 24490660 [TBL] [Abstract][Full Text] [Related]
2. Copper-catalyzed oxidative decarboxylative arylation of benzothiazoles with phenylacetic acids and α-hydroxyphenylacetic acids with O2 as the sole oxidant. Song Q; Feng Q; Zhou M Org Lett; 2013 Dec; 15(23):5990-3. PubMed ID: 24251373 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of primary amides via copper-catalyzed aerobic decarboxylative ammoxidation of phenylacetic acids and α-hydroxyphenylacetic acids with ammonia in water. Song Q; Feng Q; Yang K Org Lett; 2014 Jan; 16(2):624-7. PubMed ID: 24397736 [TBL] [Abstract][Full Text] [Related]
4. Unexpected copper-catalyzed aerobic oxidative cleavage of C(sp3)-C(sp3) bond of glycol ethers. Liu ZQ; Zhao L; Shang X; Cui Z Org Lett; 2012 Jun; 14(12):3218-21. PubMed ID: 22668348 [TBL] [Abstract][Full Text] [Related]
5. Copper-catalyzed oxidative coupling of benzylic C-H bonds with 1,3-dicarbonyl compounds. Borduas N; Powell DA J Org Chem; 2008 Oct; 73(19):7822-5. PubMed ID: 18767808 [TBL] [Abstract][Full Text] [Related]
6. Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes. Orozco LM; Renz M; Corma A ChemSusChem; 2016 Sep; 9(17):2430-42. PubMed ID: 27539722 [TBL] [Abstract][Full Text] [Related]
7. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations. Diallo A; Zhao YL; Wang H; Li SS; Ren CQ; Liu Q Org Lett; 2012 Nov; 14(22):5776-9. PubMed ID: 23126321 [TBL] [Abstract][Full Text] [Related]
8. Copper-catalyzed aerobic oxidative synthesis of α-ketoamides from methyl ketones, amines and NIS at room temperature. Zhang J; Wei Y; Lin S; Liang F; Liu P Org Biomol Chem; 2012 Dec; 10(46):9237-42. PubMed ID: 23104322 [TBL] [Abstract][Full Text] [Related]
9. Cu-catalyzed esterification reaction via aerobic oxygenation and C-C bond cleavage: an approach to α-ketoesters. Zhang C; Feng P; Jiao N J Am Chem Soc; 2013 Oct; 135(40):15257-62. PubMed ID: 24032593 [TBL] [Abstract][Full Text] [Related]
10. Thermally induced oxidative decarboxylation of copper complexes of amino acids and formation of strecker aldehyde. Nashalian O; Yaylayan VA J Agric Food Chem; 2014 Aug; 62(33):8518-23. PubMed ID: 25078730 [TBL] [Abstract][Full Text] [Related]
11. Cobalt-Catalyzed Aerobic Oxidative Cleavage of Alkyl Aldehydes: Synthesis of Ketones, Esters, Amides, and α-Ketoamides. Li T; Hammond GB; Xu B Chemistry; 2021 Jul; 27(38):9737-9741. PubMed ID: 34010489 [TBL] [Abstract][Full Text] [Related]
12. Copper-catalyzed aerobic oxidative C-C bond cleavage of unstrained ketones with air and amines. Zhou W; Fan W; Jiang Q; Liang YF; Jiao N Org Lett; 2015 May; 17(10):2542-5. PubMed ID: 25951433 [TBL] [Abstract][Full Text] [Related]
13. DMSO/I2 mediated C-C bond cleavage of α-ketoaldehydes followed by C-O bond formation: a metal-free approach for one-pot esterification. Venkateswarlu V; Aravinda Kumar KA; Gupta S; Singh D; Vishwakarma RA; Sawant SD Org Biomol Chem; 2015 Aug; 13(29):7973-8. PubMed ID: 26110656 [TBL] [Abstract][Full Text] [Related]
14. Iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabled aldehyde C-H methylation. Gong PX; Xu F; Cheng L; Gong X; Zhang J; Gu WJ; Han W Chem Commun (Camb); 2021 Jun; 57(48):5905-5908. PubMed ID: 34008616 [TBL] [Abstract][Full Text] [Related]
15. Copper-catalyzed aerobic oxidative inert C-C and C-N bond cleavage: a new strategy for the synthesis of tertiary amides. Chen X; Chen T; Li Q; Zhou Y; Han LB; Yin SF Chemistry; 2014 Sep; 20(38):12234-8. PubMed ID: 25099559 [TBL] [Abstract][Full Text] [Related]
16. Trifluoromethyl ketones from enolizable carboxylic acids via enediolate trifluoroacetylation/decarboxylation. Reeves JT; Song JJ; Tan Z; Lee H; Yee NK; Senanayake CH J Org Chem; 2008 Dec; 73(23):9476-8. PubMed ID: 18973383 [TBL] [Abstract][Full Text] [Related]
17. Copper(II)-catalyzed indolizines formation followed by dehydrogenative functionalization cascade to synthesize 1-bromoindolizines. Wang F; Shen Y; Hu H; Wang X; Wu H; Liu Y J Org Chem; 2014 Oct; 79(20):9556-66. PubMed ID: 25233481 [TBL] [Abstract][Full Text] [Related]
18. An unexplored O2-involved pathway for the decarboxylation of saturated carboxylic acids by TiO2 photocatalysis: an isotopic probe study. Wen B; Li Y; Chen C; Ma W; Zhao J Chemistry; 2010 Oct; 16(39):11859-66. PubMed ID: 20857460 [TBL] [Abstract][Full Text] [Related]
19. Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation. Murahashi S; Nakae T; Terai H; Komiya N J Am Chem Soc; 2008 Aug; 130(33):11005-12. PubMed ID: 18646852 [TBL] [Abstract][Full Text] [Related]
20. Chemoselective oxidative C(CO)-C(methyl) bond cleavage of methyl ketones to aldehydes catalyzed by CuI with molecular oxygen. Zhang L; Bi X; Guan X; Li X; Liu Q; Barry BD; Liao P Angew Chem Int Ed Engl; 2013 Oct; 52(43):11303-7. PubMed ID: 24000196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]