BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 24490807)

  • 1. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device.
    Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV
    ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.
    Marocico CA; Zhang X; Bradley AL
    J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.
    Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV
    Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.
    Ishifuji M; Mitsuishi M; Miyashita T
    J Am Chem Soc; 2009 Apr; 131(12):4418-24. PubMed ID: 19275159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.
    Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM
    J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods.
    Cao J; Zhang H; Pi X; Li D; Yang D
    Nanoscale Adv; 2021 Aug; 3(16):4810-4815. PubMed ID: 36134309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient plasmonic dye-sensitized solar cells with fluorescent Au-encapsulated C-dots.
    Narayanan R; Deepa M; Srivastava AK; Shivaprasad SM
    Chemphyschem; 2014 Apr; 15(6):1106-15. PubMed ID: 24677662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states.
    Gonzaga-Galeana JA; Zurita-Sánchez JR
    J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of plasmonic array geometry on energy transfer from a quantum well to a quantum dot layer.
    Higgins LJ; Marocico CA; Karanikolas VD; Bell AP; Gough JJ; Murphy GP; Parbrook PJ; Bradley AL
    Nanoscale; 2016 Oct; 8(42):18170-18179. PubMed ID: 27740658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon-assisted exciton transfer into silicon using nanoemitters: the role of phonons and temperature effects in Förster resonance energy transfer.
    Yeltik A; Guzelturk B; Hernandez-Martinez PL; Govorov AO; Demir HV
    ACS Nano; 2013 Dec; 7(12):10492-501. PubMed ID: 24274734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers.
    Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    Nano Lett; 2011 Aug; 11(8):3341-5. PubMed ID: 21755927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling.
    Jang S
    J Chem Phys; 2007 Nov; 127(17):174710. PubMed ID: 17994845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanophotonic control of the Förster resonance energy transfer efficiency.
    Blum C; Zijlstra N; Lagendijk A; Wubs M; Mosk AP; Subramaniam V; Vos WL
    Phys Rev Lett; 2012 Nov; 109(20):203601. PubMed ID: 23215487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures.
    Ghenuche P; de Torres J; Moparthi SB; Grigoriev V; Wenger J
    Nano Lett; 2014 Aug; 14(8):4707-14. PubMed ID: 25020141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling Förster Resonance Energy Transfer from Large Nanocrystals through Energy Migration.
    Deng R; Wang J; Chen R; Huang W; Liu X
    J Am Chem Soc; 2016 Dec; 138(49):15972-15979. PubMed ID: 27960320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A potential carcinogenic pyrene derivative under Förster resonance energy transfer to various energy acceptors in nanoscopic environments.
    Banerjee S; Goswami N; Pal SK
    Chemphyschem; 2013 Oct; 14(15):3581-93. PubMed ID: 24038989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Förster resonance energy transfer in a nanoscopic system on a dielectric interface.
    Batabyal S; Mondol T; Das K; Pal SK
    Nanotechnology; 2012 Dec; 23(49):495402. PubMed ID: 23150145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.