These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24490904)

  • 21. Formation and stabilization of C4a-hydroperoxy-FAD by the Arg/Asn pair in HadA monooxygenase.
    Pimviriyakul P; Chaiyen P
    FEBS J; 2023 Jan; 290(1):176-195. PubMed ID: 35942637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a broadly specific cadaverine N-hydroxylase involved in desferrioxamine B biosynthesis in Streptomyces sviceus.
    Giddings LA; Lountos GT; Kim KW; Brockley M; Needle D; Cherry S; Tropea JE; Waugh DS
    PLoS One; 2021; 16(3):e0248385. PubMed ID: 33784308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Delta-amino group hydroxylation of L-ornithine during coelichelin biosynthesis.
    Pohlmann V; Marahiel MA
    Org Biomol Chem; 2008 May; 6(10):1843-8. PubMed ID: 18452021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa.
    Olucha J; Meneely KM; Chilton AS; Lamb AL
    J Biol Chem; 2011 Sep; 286(36):31789-98. PubMed ID: 21757711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen reactions in p-hydroxybenzoate hydroxylase utilize the H-bond network during catalysis.
    Ortiz-Maldonado M; Entsch B; Ballou DP
    Biochemistry; 2004 Dec; 43(48):15246-57. PubMed ID: 15568817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis.
    Sheng D; Ballou DP; Massey V
    Biochemistry; 2001 Sep; 40(37):11156-67. PubMed ID: 11551214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen movements in the oxidative half-reaction of kynurenine 3-monooxygenase from Pseudomonas fluorescens reveal the mechanism of hydroxylation.
    Beaupre BA; Reabe KR; Roman JV; Moran GR
    Arch Biochem Biophys; 2020 Sep; 690():108474. PubMed ID: 32687799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human flavin-containing monooxygenase 1 and its long-sought hydroperoxyflavin intermediate.
    Cheropkina H; Catucci G; Marucco A; Fenoglio I; Gilardi G; Sadeghi SJ
    Biochem Pharmacol; 2021 Nov; 193():114763. PubMed ID: 34509493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural insight into the mechanism of oxygen activation and substrate selectivity of flavin-dependent N-hydroxylating monooxygenases.
    Franceschini S; Fedkenheuer M; Vogelaar NJ; Robinson HH; Sobrado P; Mattevi A
    Biochemistry; 2012 Sep; 51(36):7043-5. PubMed ID: 22928747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulated O2 activation in flavin-dependent monooxygenases.
    Frederick RE; Mayfield JA; DuBois JL
    J Am Chem Soc; 2011 Aug; 133(32):12338-41. PubMed ID: 21774554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate binding modulates the activity of Mycobacterium smegmatis G, a flavin-dependent monooxygenase involved in the biosynthesis of hydroxamate-containing siderophores.
    Robinson R; Sobrado P
    Biochemistry; 2011 Oct; 50(39):8489-96. PubMed ID: 21870809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases.
    Olucha J; Lamb AL
    Bioorg Chem; 2011 Dec; 39(5-6):171-7. PubMed ID: 21871647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase.
    Tinikul R; Lawan N; Akeratchatapan N; Pimviriyakul P; Chinantuya W; Suadee C; Sucharitakul J; Chenprakhon P; Ballou DP; Entsch B; Chaiyen P
    FEBS J; 2021 May; 288(10):3246-3260. PubMed ID: 33289305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of proton-linked flavin conformational changes in p-hydroxybenzoate hydroxylase.
    Frederick KK; Palfey BA
    Biochemistry; 2005 Oct; 44(40):13304-14. PubMed ID: 16201756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction.
    Meneely KM; Barr EW; Bollinger JM; Lamb AL
    Biochemistry; 2009 May; 48(20):4371-6. PubMed ID: 19368334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of N-hydroxylation catalyzed by flavin-dependent monooxygenases.
    Badieyan S; Bach RD; Sobrado P
    J Org Chem; 2015 Feb; 80(4):2139-47. PubMed ID: 25633869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P
    J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution to catalysis of ornithine binding residues in ornithine N5-monooxygenase.
    Robinson R; Qureshi IA; Klancher CA; Rodriguez PJ; Tanner JJ; Sobrado P
    Arch Biochem Biophys; 2015 Nov; 585():25-31. PubMed ID: 26375201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of action of a flavin-containing monooxygenase.
    Eswaramoorthy S; Bonanno JB; Burley SK; Swaminathan S
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9832-7. PubMed ID: 16777962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.