BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24490996)

  • 1. LeMAPK1, LeMAPK2, and LeMAPK3 are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit.
    Zheng Y; Hong H; Chen L; Li J; Sheng J; Shen L
    J Agric Food Chem; 2014 Feb; 62(6):1390-6. PubMed ID: 24490996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.
    Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L
    J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato.
    Małolepsza U; Rózalska S
    Plant Physiol Biochem; 2005 Jun; 43(6):623-35. PubMed ID: 15922611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preharvest L-arginine treatment induced postharvest disease resistance to Botrysis cinerea in tomato fruits.
    Zheng Y; Sheng J; Zhao R; Zhang J; Lv S; Liu L; Shen L
    J Agric Food Chem; 2011 Jun; 59(12):6543-9. PubMed ID: 21574662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit.
    Yu W; Zhao R; Sheng J; Shen L
    J Agric Food Chem; 2018 Sep; 66(38):9923-9932. PubMed ID: 30192535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SlMYC2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea.
    Min D; Li F; Cui X; Zhou J; Li J; Ai W; Shu P; Zhang X; Li X; Meng D; Guo Y; Li J
    Food Chem; 2020 Apr; 310():125901. PubMed ID: 31816533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea.
    Sun C; Fu D; Jin L; Chen M; Zheng X; Yu T
    Carbohydr Polym; 2018 Nov; 199():341-352. PubMed ID: 30143138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants.
    Zhang S; Wang L; Zhao R; Yu W; Li R; Li Y; Sheng J; Shen L
    J Agric Food Chem; 2018 Aug; 66(34):8949-8956. PubMed ID: 30092129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea.
    Sun G; Feng C; Zhang A; Zhang Y; Chang D; Wang Y; Ma Q
    World J Microbiol Biotechnol; 2019 Feb; 35(2):36. PubMed ID: 30712096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato.
    Liu M; Zhang Z; Xu Z; Wang L; Chen C; Ren Z
    Plant Cell Rep; 2021 Jan; 40(1):43-58. PubMed ID: 32990799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms.
    Audenaert K; De Meyer GB; Höfte MM
    Plant Physiol; 2002 Feb; 128(2):491-501. PubMed ID: 11842153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Mediated
    Shu P; Li Z; Min D; Zhang X; Ai W; Li J; Zhou J; Li Z; Li F; Li X
    J Agric Food Chem; 2020 May; 68(20):5529-5538. PubMed ID: 32372640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Effects of l-Arginine and Methyl Salicylate on Alleviating Postharvest Disease Caused by Botrysis cinerea in Tomato Fruit.
    Zhang X; Min D; Li F; Ji N; Meng D; Li L
    J Agric Food Chem; 2017 Jun; 65(24):4890-4896. PubMed ID: 28535671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Synergistion mechanism of exogenous Ca2+ to SA-induced resistance to Botrytis cinerea in tomato].
    Li LL; Li TL; Jiang GB; Jin H; Zou JX
    Ying Yong Sheng Tai Xue Bao; 2015 Nov; 26(11):3497-502. PubMed ID: 26915208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological control of Botrytis gray mould on tomato cultivated in greenhouse.
    Fiume F; Fiume G
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):897-908. PubMed ID: 17390837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignin metabolism involves Botrytis cinerea BcGs1- induced defense response in tomato.
    Yang C; Liang Y; Qiu D; Zeng H; Yuan J; Yang X
    BMC Plant Biol; 2018 Jun; 18(1):103. PubMed ID: 29866036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SlARG2 contributes to MeJA-induced defense responses to Botrytis cinerea in tomato fruit.
    Min D; Ai W; Zhou J; Li J; Zhang X; Li Z; Shi Z; Li F; Li X; Guo Y
    Pest Manag Sci; 2020 Sep; 76(9):3292-3301. PubMed ID: 32384210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato.
    Flors V; Leyva Mde L; Vicedo B; Finiti I; Real MD; García-Agustín P; Bennett AB; González-Bosch C
    Plant J; 2007 Dec; 52(6):1027-40. PubMed ID: 17916112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyl jasmonate-induced defense responses are associated with elevation of 1-aminocyclopropane-1-carboxylate oxidase in Lycopersicon esculentum fruit.
    Yu M; Shen L; Zhang A; Sheng J
    J Plant Physiol; 2011 Oct; 168(15):1820-7. PubMed ID: 21788095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.
    Díaz J; ten Have A; van Kan JA
    Plant Physiol; 2002 Jul; 129(3):1341-51. PubMed ID: 12114587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.