BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2449121)

  • 1. Bacteriostatic action of streptomycin on ribosomally resistant mutants (rpsL) of Salmonella typhimurium.
    Fernández RO; Antón DN
    Antimicrob Agents Chemother; 1987 Oct; 31(10):1627-31. PubMed ID: 2449121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium.
    Björkman J; Samuelsson P; Andersson DI; Hughes D
    Mol Microbiol; 1999 Jan; 31(1):53-8. PubMed ID: 9987109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host mutations (miaA and rpsL) reduce tetracycline resistance mediated by Tet(O) and Tet(M).
    Taylor DE; Trieber CA; Trescher G; Bekkering M
    Antimicrob Agents Chemother; 1998 Jan; 42(1):59-64. PubMed ID: 9449261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of ampicillin instead of streptomycin in Salmonella-infected mouse peritoneal macrophage cultures.
    Gröschel D; Jakubowitch R
    J Bacteriol; 1967 Mar; 93(3):1199-200. PubMed ID: 4164897
    [No Abstract]   [Full Text] [Related]  

  • 5. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium.
    Maisnier-Patin S; Berg OG; Liljas L; Andersson DI
    Mol Microbiol; 2002 Oct; 46(2):355-66. PubMed ID: 12406214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of streptomycin derivatives on sensitive and dependent strains of Escherichia coli.
    Brownstein BL; Schochetman G; Koschel K
    Mol Pharmacol; 1969 Nov; 5(6):549-56. PubMed ID: 4190617
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of dihydrostreptomycin on protein synthesis in whole cells and in cell-free extracts of a streptomycin-dependent strain of Escherichia coli B.
    Dixon H; Polglase WJ
    J Bacteriol; 1969 Oct; 100(1):247-53. PubMed ID: 4186510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [3H] dihydrostreptomycin accumulation and binding to ribosomes in Rhizobium mutants with different levels of streptomycin resistance.
    Zelazna-Kowalska I
    J Bacteriol; 1977 Oct; 132(1):8-12. PubMed ID: 72064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction between streptomycin and ribosomal RNA.
    Leclerc D; Melançon P; Brakier-Gingras L
    Biochimie; 1991 Dec; 73(12):1431-8. PubMed ID: 1725256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast and cytoplasmic ribosomes of Euglena: selective binding of dihydrostreptomycin to chloroplast ribosomes.
    Schwartzbach SD; Schiff JA
    J Bacteriol; 1974 Oct; 120(1):334-41. PubMed ID: 4138802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin.
    Bryan LE; Kwan S
    Antimicrob Agents Chemother; 1983 Jun; 23(6):835-45. PubMed ID: 6351731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of rpsL and rrs genes mutations related to streptomycin resistance in Mdr and Xdr clinical isolates of Mycobacterium tuberculosis.
    Arjomandzadegan M; Gravand S
    Tuberk Toraks; 2015; 63(4):235-42. PubMed ID: 26963306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular distribution of 3H-dihydrostreptomycin in a streptomycin-dependent strain of Bacillus megaterium.
    Wolfgang RW; Lawrence NL
    J Bacteriol; 1968 Apr; 95(4):1295-9. PubMed ID: 4171577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the rpsL and rrs genes of streptomycin-resistant clinical isolates of Mycobacterium tuberculosis in Japan.
    Katsukawa C; Tamaru A; Miyata Y; Abe C; Makino M; Suzuki Y
    J Appl Microbiol; 1997 Nov; 83(5):634-40. PubMed ID: 9418025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of streptomycin or dihydrostreptomycin binding to 16S RNA or to 30S ribosomal subunits.
    Garvin RT; Biswas DK; Gorini L
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3814-8. PubMed ID: 4139702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of common rpsL mutations in Escherichia coli to sensitivity to ribosome targeting antibiotics.
    Pelchovich G; Schreiber R; Zhuravlev A; Gophna U
    Int J Med Microbiol; 2013 Dec; 303(8):558-62. PubMed ID: 23972615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bactericidal action of streptomycin: membrane permeabilization caused by the insertion of mistranslated proteins into the cytoplasmic membrane of Escherichia coli and subsequent caging of the antibiotic inside the cells due to degradation of these proteins.
    Busse HJ; Wöstmann C; Bakker EP
    J Gen Microbiol; 1992 Mar; 138(3):551-61. PubMed ID: 1375623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation of aerobiosis and ionic strength to the uptake of dihydrostreptomycin in Escherichia coli.
    Campbell BD; Kadner RJ
    Biochim Biophys Acta; 1980 Nov; 593(1):1-10. PubMed ID: 6159001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streptomycin resistance in chloramphenicol-producing strains of Streptomyces species 3022a.
    Francis MM; Cella R; Vining LC
    Can J Microbiol; 1975 Jun; 21(6):911-9. PubMed ID: 1148937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome.
    Leclerc D; Melançon P; Brakier-Gingras L
    Nucleic Acids Res; 1991 Jul; 19(14):3973-7. PubMed ID: 1713666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.