These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 24491217)
1. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay. Boinovich L; Emelyanenko AM; Korolev VV; Pashinin AS Langmuir; 2014 Feb; 30(6):1659-68. PubMed ID: 24491217 [TBL] [Abstract][Full Text] [Related]
2. Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions. Emelyanenko AM; Boinovich LB; Bezdomnikov AA; Chulkova EV; Emelyanenko KA ACS Appl Mater Interfaces; 2017 Jul; 9(28):24210-24219. PubMed ID: 28657289 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of ice nucleation on water repellent surfaces. Alizadeh A; Yamada M; Li R; Shang W; Otta S; Zhong S; Ge L; Dhinojwala A; Conway KR; Bahadur V; Vinciquerra AJ; Stephens B; Blohm ML Langmuir; 2012 Feb; 28(6):3180-6. PubMed ID: 22235939 [TBL] [Abstract][Full Text] [Related]
4. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces. Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148 [TBL] [Abstract][Full Text] [Related]
5. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface. Boinovich L; Emelyanenko AM Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023 [TBL] [Abstract][Full Text] [Related]
6. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109 [TBL] [Abstract][Full Text] [Related]
7. Are superhydrophobic surfaces best for icephobicity? Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778 [TBL] [Abstract][Full Text] [Related]
8. Anti-icing properties of a superhydrophobic surface in a salt environment: an unexpected increase in freezing delay times for weak brine droplets. Boinovich LB; Emelyanenko AM; Emelyanenko KA; Maslakov KI Phys Chem Chem Phys; 2016 Jan; 18(4):3131-6. PubMed ID: 26743911 [TBL] [Abstract][Full Text] [Related]
9. Effect of Aluminum Substrate Surface Modification on Wettability and Freezing Delay of Water Droplet at Subzero Temperatures. Rahimi M; Afshari A; Thormann E ACS Appl Mater Interfaces; 2016 May; 8(17):11147-53. PubMed ID: 27045573 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624 [TBL] [Abstract][Full Text] [Related]
11. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
12. Condensation and freezing of droplets on superhydrophobic surfaces. Oberli L; Caruso D; Hall C; Fabretto M; Murphy PJ; Evans D Adv Colloid Interface Sci; 2014 Aug; 210():47-57. PubMed ID: 24200089 [TBL] [Abstract][Full Text] [Related]
13. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases. Alpert PA; Aller JY; Knopf DA Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788 [TBL] [Abstract][Full Text] [Related]
14. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048 [TBL] [Abstract][Full Text] [Related]
16. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells. Kasuga J; Mizuno K; Arakawa K; Fujikawa S Cryobiology; 2007 Dec; 55(3):305-14. PubMed ID: 17936742 [TBL] [Abstract][Full Text] [Related]
17. A wetting experiment as a tool to study the physicochemical processes accompanying the contact of hydrophobic and superhydrophobic materials with aqueous media. Boinovich L; Emelyanenko A Adv Colloid Interface Sci; 2012 Nov; 179-182():133-41. PubMed ID: 22795775 [TBL] [Abstract][Full Text] [Related]
18. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates. Knopf DA; Rigg YJ J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213 [TBL] [Abstract][Full Text] [Related]
19. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Xu W; Leeladhar R; Kang YT; Choi CH Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600 [TBL] [Abstract][Full Text] [Related]
20. Predictive model for ice formation on superhydrophobic surfaces. Bahadur V; Mishchenko L; Hatton B; Taylor JA; Aizenberg J; Krupenkin T Langmuir; 2011 Dec; 27(23):14143-50. PubMed ID: 21899285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]