These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 24491295)

  • 1. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass.
    Wu FC; Wu JY; Liao YJ; Wang MY; Shih IL
    Bioresour Technol; 2014 Mar; 156():123-31. PubMed ID: 24491295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach.
    Kumar S; Gupta R; Kumar G; Sahoo D; Kuhad RC
    Bioresour Technol; 2013 May; 135():150-6. PubMed ID: 23312437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate.
    Wu FC; Huang SS; Shih IL
    Bioresour Technol; 2014 Sep; 167():159-68. PubMed ID: 24980028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa.
    Shukla R; Kumar M; Chakraborty S; Gupta R; Kumar S; Sahoo D; Kuhad RC
    Bioresour Technol; 2016 Nov; 220():584-589. PubMed ID: 27619709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.
    Kim KH; Choi IS; Kim HM; Wi SG; Bae HJ
    Bioresour Technol; 2014 Feb; 153():47-54. PubMed ID: 24333701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies.
    Hargreaves PI; Barcelos CA; da Costa AC; Pereira N
    Bioresour Technol; 2013 Apr; 134():257-63. PubMed ID: 23500583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production.
    Kataria R; Ghosh S
    Bioresour Technol; 2011 Nov; 102(21):9970-5. PubMed ID: 21907576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential use of feedlot cattle manure for bioethanol production.
    Vancov T; Schneider RC; Palmer J; McIntosh S; Stuetz R
    Bioresour Technol; 2015 May; 183():120-8. PubMed ID: 25727759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioethanol production from Yarrowia lipolytica Po1g biomass.
    Tsigie YA; Wu CH; Huynh LH; Ismadji S; Ju YH
    Bioresour Technol; 2013 Oct; 145():210-6. PubMed ID: 23265824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation.
    Kuhad RC; Gupta R; Khasa YP; Singh A
    Bioresour Technol; 2010 Nov; 101(21):8348-54. PubMed ID: 20584600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile.
    Trivedi N; Gupta V; Reddy CR; Jha B
    Bioresour Technol; 2013 Dec; 150():106-12. PubMed ID: 24157682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential.
    Cybulska I; Chaturvedi T; Brudecki GP; Kádár Z; Meyer AS; Baldwin RM; Thomsen MH
    Bioresour Technol; 2014 Feb; 153():165-72. PubMed ID: 24362358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation.
    Wang X; Liu X; Wang G
    J Integr Plant Biol; 2011 Mar; 53(3):246-52. PubMed ID: 21205190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of bioethanol production from olive mill solid wastes.
    Abu Tayeh H; Najami N; Dosoretz C; Tafesh A; Azaizeh H
    Bioresour Technol; 2014; 152():24-30. PubMed ID: 24275022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.
    Chu Q; Li X; Ma B; Xu Y; Ouyang J; Zhu J; Yu S; Yong Q
    Bioresour Technol; 2012 Nov; 123():699-702. PubMed ID: 22975252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioethanol production from Ipomoea carnea biomass using a potential hybrid yeast strain.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2013 Oct; 171(3):771-85. PubMed ID: 23892623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.
    Lee OK; Oh YK; Lee EY
    Bioresour Technol; 2015 Nov; 196():22-7. PubMed ID: 26218538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose.
    Nguyen TH; Ra CH; Sunwoo I; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2017 Apr; 40(4):529-536. PubMed ID: 27990562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production.
    Sindhu R; Kuttiraja M; Binod P; Janu KU; Sukumaran RK; Pandey A
    Bioresour Technol; 2011 Dec; 102(23):10915-21. PubMed ID: 22000965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.