These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 24491341)
1. Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells. Li J; Jiu T; Tao GH; Wang G; Sun C; Li P; Fang J; He L J Colloid Interface Sci; 2014 Apr; 419():142-7. PubMed ID: 24491341 [TBL] [Abstract][Full Text] [Related]
2. Ternary CuZnS Nanocrystals: Synthesis, Characterization, and Interfacial Application in Perovskite Solar Cells. Li J; Kuang C; Zhao M; Zhao C; Liu L; Lu F; Wang N; Huang C; Duan C; Jian H; Yao L; Jiu T Inorg Chem; 2018 Jul; 57(14):8375-8381. PubMed ID: 29952566 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. Wang HY; Hua XW; Wu FG; Li B; Liu P; Gu N; Wang Z; Chen Z ACS Appl Mater Interfaces; 2015 Apr; 7(13):7082-92. PubMed ID: 25785786 [TBL] [Abstract][Full Text] [Related]
4. Facile and low temperature route to synthesis of CuS nanostructure in mesoporous material by solvothermal method. Sohrabnezhad Sh; Zanjanchi MA; Hosseingholizadeh S; Rahnama R Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():142-50. PubMed ID: 24394530 [TBL] [Abstract][Full Text] [Related]
5. Post-Synthesis Incorporation of ⁶⁴Cu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. Riedinger A; Avellini T; Curcio A; Asti M; Xie Y; Tu R; Marras S; Lorenzoni A; Rubagotti S; Iori M; Capponi PC; Versari A; Manna L; Seregni E; Pellegrino T J Am Chem Soc; 2015 Dec; 137(48):15145-51. PubMed ID: 26551614 [TBL] [Abstract][Full Text] [Related]
6. Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Ghezelbash A; Korgel BA Langmuir; 2005 Oct; 21(21):9451-6. PubMed ID: 16207021 [TBL] [Abstract][Full Text] [Related]
7. Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions. Xie Y; Riedinger A; Prato M; Casu A; Genovese A; Guardia P; Sottini S; Sangregorio C; Miszta K; Ghosh S; Pellegrino T; Manna L J Am Chem Soc; 2013 Nov; 135(46):17630-7. PubMed ID: 24128337 [TBL] [Abstract][Full Text] [Related]
8. Boosting the Efficiency of Quantum Dot-Sensitized Solar Cells through Formation of the Cation-Exchanged Hole Transporting Layer. Maiti S; Azlan F; Anand P; Jadhav Y; Dana J; Haram SK; Ghosh HN Langmuir; 2018 Jan; 34(1):50-57. PubMed ID: 29219326 [TBL] [Abstract][Full Text] [Related]
9. Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Du W; Qian X; Ma X; Gong Q; Cao H; Yin J Chemistry; 2007; 13(11):3241-7. PubMed ID: 17200918 [TBL] [Abstract][Full Text] [Related]
10. Pre-phase transition of a Cu Zhang Y; He S; Zhang Q; Zhang H; Zhou J; Yang X; Wei Q; Chen L Nanoscale; 2024 Jan; 16(3):1260-1271. PubMed ID: 38126257 [TBL] [Abstract][Full Text] [Related]
11. Tuning and Locking the Localized Surface Plasmon Resonances of CuS (Covellite) Nanocrystals by an Amorphous CuPd Xie Y; Chen W; Bertoni G; Kriegel I; Xiong M; Li N; Prato M; Riedinger A; Sathya A; Manna L Chem Mater; 2017 Feb; 29(4):1716-1723. PubMed ID: 28413257 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors. Ajibade PA; Botha NL Nanomaterials (Basel); 2017 Feb; 7(2):. PubMed ID: 28336865 [TBL] [Abstract][Full Text] [Related]
13. Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au Hu C; Chen W; Xie Y; Verma SK; Destro P; Zhan G; Chen X; Zhao X; Schuck PJ; Kriegel I; Manna L Nanoscale; 2018 Feb; 10(6):2781-2789. PubMed ID: 29359781 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals. Corrado C; Jiang Y; Oba F; Kozina M; Bridges F; Zhang JZ J Phys Chem A; 2009 Apr; 113(16):3830-9. PubMed ID: 19170574 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast Hole Trapping and Relaxation Dynamics in p-Type CuS Nanodisks. Ludwig J; An L; Pattengale B; Kong Q; Zhang X; Xi P; Huang J J Phys Chem Lett; 2015 Jul; 6(14):2671-5. PubMed ID: 26266846 [TBL] [Abstract][Full Text] [Related]
16. Green synthesis of covellite nanocrystals using biologically generated sulfide: potential for bioremediation systems. da Costa JP; Girão AV; Lourenço JP; Monteiro OC; Trindade T; Costa MC J Environ Manage; 2013 Oct; 128():226-32. PubMed ID: 23747373 [TBL] [Abstract][Full Text] [Related]
17. Physico-chemical investigation of ZnS thin-film deposited from ligand-free nanocrystals synthesized by non-hydrolytic thio-sol-gel. Del Gobbo S; Mottram AD; Ould-Chikh S; Chaopaknam J; Pattanasattayavong P; D'Elia V Nanotechnology; 2018 Sep; 29(38):385603. PubMed ID: 29949522 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of Cu₂O/CuO Nanocrystals and Their Application to H₂S Sensing. Mikami K; Kido Y; Akaishi Y; Quitain A; Kida T Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626139 [TBL] [Abstract][Full Text] [Related]
19. High-yield room temperature route to copper sulfide hollow nanospheres and their electrochemical properties. Wang Y; Li Q; Nie M; Li X; Li Y; Zhong X Nanotechnology; 2011 Jul; 22(30):305401. PubMed ID: 21709346 [TBL] [Abstract][Full Text] [Related]
20. Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals. van der Stam W; Gudjonsdottir S; Evers WH; Houtepen AJ J Am Chem Soc; 2017 Sep; 139(37):13208-13217. PubMed ID: 28841295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]