BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24491460)

  • 1. Potential α-glucosidase inhibitors from thermal transformation of (+)-catechin.
    Kim T; Choi HJ; Eom SH; Lee J; Kim TH
    Bioorg Med Chem Lett; 2014 Mar; 24(6):1621-4. PubMed ID: 24491460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and identification of α-glucosidase inhibitory constituents from the seeds of Vigna nakashimae: Enzyme kinetic study with active phytochemical.
    Ha TJ; Bo Song S; Ko J; Park CH; Ko JM; Choe ME; Kwak DY; Lee JH
    Food Chem; 2018 Nov; 266():483-489. PubMed ID: 30381216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory activity of (-)-epicatechin-3,5-O-digallate on α-glucosidase and in silico analysis.
    Kim JH; Kim HY; Yang SY; Kim JB; Jin CH; Kim YH
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1162-1167. PubMed ID: 28958819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytochemical, antioxidant and anti-α-glucosidase activity evaluations of Bergenia cordifolia.
    Roselli M; Lentini G; Habtemariam S
    Phytother Res; 2012 Jun; 26(6):908-14. PubMed ID: 22105868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimerization of piceatannol by Momordica charantia peroxidase and α-glucosidase inhibitory activity of the biotransformation products.
    Wan X; Wang XB; Yang MH; Wang JS; Kong LY
    Bioorg Med Chem; 2011 Sep; 19(17):5085-92. PubMed ID: 21839642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization, inhibitory activity and mechanism of polyphenols from faba bean (gallic-acid and catechin) on α-glucosidase: insights from molecular docking and simulation study.
    Choudhary DK; Chaturvedi N; Singh A; Mishra A
    Prep Biochem Biotechnol; 2020; 50(2):123-132. PubMed ID: 31702433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four New Flavonoids with α-Glucosidase Inhibitory Activities from Morus alba var. tatarica.
    Zhang YL; Luo JG; Wan CX; Zhou ZB; Kong LY
    Chem Biodivers; 2015 Nov; 12(11):1768-76. PubMed ID: 26567954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization.
    Li ZP; Song YH; Uddin Z; Wang Y; Park KH
    Bioorg Med Chem; 2018 Feb; 26(3):737-746. PubMed ID: 29306546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of catechin-grafted chitosan with antioxidant and antidiabetic potential.
    Zhu W; Zhang Z
    Int J Biol Macromol; 2014 Sep; 70():150-5. PubMed ID: 24995632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homonojirimycin isomers and N-alkylated homonojirimycins: structural and conformational basis of inhibition of glycosidases.
    Asano N; Nishida M; Kato A; Kizu H; Matsui K; Shimada Y; Itoh T; Baba M; Watson AA; Nash RJ; Lilley PM; Watkin DJ; Fleet GW
    J Med Chem; 1998 Jul; 41(14):2565-71. PubMed ID: 9651160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic transformation of esculetin as a potent class of α-glucosidase inhibitors.
    Han Jeong G; Cho JH; Park KI; Kim K; Hoon Kim T
    Bioorg Med Chem Lett; 2023 May; 88():129302. PubMed ID: 37088219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxycoumarin derivatives: novel and potent α-glucosidase inhibitors.
    Shen Q; Shao J; Peng Q; Zhang W; Ma L; Chan AS; Gu L
    J Med Chem; 2010 Dec; 53(23):8252-9. PubMed ID: 21053896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma-Induced Oxidation Products of (-)-Epigallocatechin Gallate with Digestive Enzymes Inhibitory Effects.
    Jeong GH; Kim TH
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New phenylpropanoids and in vitro α-glucosidase inhibitors from Balanophora japonica.
    Zhou T; Zhang XH; Zhang SW; Liu SS; Xuan LJ
    Planta Med; 2011 Mar; 77(5):477-81. PubMed ID: 20979022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-Glucosidase inhibition by luteolin: kinetics, interaction and molecular docking.
    Yan J; Zhang G; Pan J; Wang Y
    Int J Biol Macromol; 2014 Mar; 64():213-23. PubMed ID: 24333230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longipetalosides A-C, new steroidal saponins from Tribulus longipetalus.
    Naveed MA; Riaz N; Saleem M; Jabeen B; Ashraf M; Ismail T; Jabbar A
    Steroids; 2014 May; 83():45-51. PubMed ID: 24530871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of alpha-glucosidase inhibitors from a new fermented tea obtained by tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves.
    Toshima A; Matsui T; Noguchi M; Qiu J; Tamaya K; Miyata Y; Tanaka T; Tanaka K
    J Sci Food Agric; 2010 Jul; 90(9):1545-50. PubMed ID: 20549810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and α-glucosidase inhibitory activity evaluation of N-substituted aminomethyl-β-d-glucopyranosides.
    Bian X; Fan X; Ke C; Luan Y; Zhao G; Zeng A
    Bioorg Med Chem; 2013 Sep; 21(17):5442-50. PubMed ID: 23810673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New α-glucosidase inhibitors with p-terphenyl skeleton from the mushroom Hydnellum concrescens.
    Wang SM; Han JJ; Ma K; Jin T; Bao L; Pei YF; Liu HW
    Fitoterapia; 2014 Oct; 98():149-55. PubMed ID: 25088970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton.
    Khan KM; Rahim F; Wadood A; Kosar N; Taha M; Lalani S; Khan A; Fakhri MI; Junaid M; Rehman W; Khan M; Perveen S; Sajid M; Choudhary MI
    Eur J Med Chem; 2014 Jun; 81():245-52. PubMed ID: 24844449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.