These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24491490)

  • 21. Specificity of the T cell immune response to acetylcholine receptor in experimental autoimmune myasthenia gravis. Response to subunits and synthetic peptides.
    Fujii Y; Lindstrom J
    J Immunol; 1988 Mar; 140(6):1830-7. PubMed ID: 2450133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The main immunogenic region of the nicotinic acetylcholine receptor. Identification of amino acid residues interacting with different antibodies.
    Bellone M; Tang F; Milius R; Conti-Tronconi BM
    J Immunol; 1989 Dec; 143(11):3568-79. PubMed ID: 2584708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence against acetylcholine receptor having a main immunogenic region as target for autoantibodies in myasthenia gravis.
    Lennon VA; Griesmann GE
    Neurology; 1989 Aug; 39(8):1069-76. PubMed ID: 2474772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of human anti-acetylcholine receptor monoclonal autoantibodies from the peripheral blood of a myasthenia gravis patient using combinatorial libraries.
    Rey E; Zeidel M; Rhine C; Tami J; Krolick K; Fischbach M; Sanz I
    Clin Immunol; 2000 Sep; 96(3):269-79. PubMed ID: 10964546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of experimental autoimmune myasthenia gravis by major histocompatibility complex class II competitor peptides results not only in a suppressed but also in an altered immune response.
    Wauben MH; Hoedemaekers AC; Graus YM; Wagenaar JP; van Eden W; de Baets MH
    Eur J Immunol; 1996 Dec; 26(12):2866-75. PubMed ID: 8977279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Profile of the regions of acetylcholine receptor alpha chain recognized by T-lymphocytes and by antibodies in EAMG-susceptible and non-susceptible mouse strains after different periods of immunization with the receptor.
    Oshima M; Pachner AR; Atassi MZ
    Mol Immunol; 1994 Aug; 31(11):833-43. PubMed ID: 7519305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-resolution epitope mapping and fine antigenic characterization of the main immunogenic region of the acetylcholine receptor. Improving the binding activity of synthetic analogues of the region.
    Papadouli I; Sakarellos C; Tzartos SJ
    Eur J Biochem; 1993 Jan; 211(1-2):227-34. PubMed ID: 7678806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of human anti-acetylcholine receptor monoclonal antibodies from transgenic mice expressing human immunoglobulin loci.
    Protopapadakis E; Kokla A; Tzartos SJ; Mamalaki A
    Eur J Immunol; 2005 Jun; 35(6):1960-8. PubMed ID: 15915538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Precise epitope mapping of monoclonal antibodies to the cytoplasmic side of the acetylcholine receptor alpha subunit. Dissecting a potentially myasthenogenic epitope.
    Tzartos SJ; Remoundos MS
    Eur J Biochem; 1992 Aug; 207(3):915-22. PubMed ID: 1379917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental myasthenia gravis is inhibited by receptor-antireceptor complexes.
    Barkas T; Simpson JA
    J Clin Lab Immunol; 1982 Apr; 7(3):223-7. PubMed ID: 7097749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathogenesis of hyperacute experimental autoimmune myasthenia gravis. Acetylcholine receptor/cholinergic site/receptor function/autoimmunity.
    Mihovilovic M; Donnelly-Roberts D; Richman DP; Martinez-Carrion M
    J Immunol; 1994 Jun; 152(12):5997-6002. PubMed ID: 8207224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of human-Torpedo hybrid acetylcholine receptor (AChR) for analysing the subunit specificity of antibodies in sera from patients with myasthenia gravis (MG).
    Loutrari H; Kokla A; Trakas N; Tzartos SJ
    Clin Exp Immunol; 1997 Sep; 109(3):538-46. PubMed ID: 9328134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-dimensional 1H-NMR study of antigen-antibody interactions: binding of synthetic decapeptides to an anti-acetylcholine receptor monoclonal antibody.
    Cung MT; Demange P; Marraud M; Tsikaris V; Sakarellos C; Papadouli I; Kokla A; Tzartos SJ
    Biopolymers; 1991 May; 31(6):769-76. PubMed ID: 1932573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The third-dimensional structure of the complex between an Fv antibody fragment and an analogue of the main immunogenic region of the acetylcholine receptor: a combined two-dimensional NMR, homology, and molecular modeling approach.
    Kleinjung J; Petit MC; Orlewski P; Mamalaki A; Tzartos SJ; Tsikaris V; Sakarellos-Daitsiotis M; Sakarellos C; Marraud M; Cung MT
    Biopolymers; 2000 Feb; 53(2):113-28. PubMed ID: 10679615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Passive transfer of experimental myasthenia gravis via antigenic modulation of acetylcholine receptor.
    Loutrari H; Kokla A; Tzartos SJ
    Eur J Immunol; 1992 Sep; 22(9):2449-52. PubMed ID: 1516631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor.
    Bellone M; Ostlie N; Lei SJ; Wu XD; Conti-Tronconi BM
    J Immunol; 1991 Sep; 147(5):1484-91. PubMed ID: 1715360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial expression of a single-chain Fv fragment which efficiently protects the acetylcholine receptor against antigenic modulation caused by myasthenic antibodies.
    Mamalaki A; Trakas N; Tzartos SJ
    Eur J Immunol; 1993 Aug; 23(8):1839-45. PubMed ID: 8344344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstitution of conformationally dependent epitopes on the N-terminal extracellular domain of the human muscle acetylcholine receptor alpha subunit expressed in Escherichia coli: implications for myasthenia gravis therapeutic approaches.
    Tsouloufis T; Mamalaki A; Remoundos M; Tzartos SJ
    Int Immunol; 2000 Sep; 12(9):1255-65. PubMed ID: 10967020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis.
    Balasa B; Deng C; Lee J; Christadoss P; Sarvetnick N
    J Immunol; 1998 Sep; 161(6):2856-62. PubMed ID: 9743346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myasthenia gravis: effect on antibody binding of conservative substitutions of amino acid residues forming the main immunogenic region of the nicotinic acetylcholine receptor.
    Wahlsten JL; Lindstrom JM; Ostlie N; Wu XD; Conti-Tronconi BM
    J Recept Res; 1993; 13(5):863-79. PubMed ID: 8463998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.