These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 24491505)
21. Transcriptome analysis of mRNA and microRNAs in intramuscular fat tissues of castrated and intact male Chinese Qinchuan cattle. Zhang YY; Wang HB; Wang YN; Wang HC; Zhang S; Hong JY; Guo HF; Chen D; Yang Y; Zan LS PLoS One; 2017; 12(10):e0185961. PubMed ID: 29073274 [TBL] [Abstract][Full Text] [Related]
22. AMP-activated protein kinase is negatively associated with intramuscular fat content in longissimus dorsi muscle of beef cattle. Underwood KR; Means WJ; Zhu MJ; Ford SP; Hess BW; Du M Meat Sci; 2008 Jun; 79(2):394-402. PubMed ID: 22062768 [TBL] [Abstract][Full Text] [Related]
23. Relationships between intramuscular fat content, selected carcass traits, and fatty acid profile in bulls using a F2-population. Hoehne A; Nuernberg G; Kuehn C; Nuernberg K Meat Sci; 2012 Mar; 90(3):629-35. PubMed ID: 22094240 [TBL] [Abstract][Full Text] [Related]
24. Glucose-6-phosphate dehydrogenase and leptin are related to marbling differences among Limousin and Angus or Japanese Black x Angus steers. Bonnet M; Faulconnier Y; Leroux C; Jurie C; Cassar-Malek I; Bauchart D; Boulesteix P; Pethick D; Hocquette JF; Chilliard Y J Anim Sci; 2007 Nov; 85(11):2882-94. PubMed ID: 17591707 [TBL] [Abstract][Full Text] [Related]
25. Marbling in the longissimus thoracis muscle from lean cattle breeds. Computer image analysis of fresh versus stained meat samples. Peña F; Molina A; Avilés C; Juárez M; Horcada A Meat Sci; 2013 Nov; 95(3):512-9. PubMed ID: 23793087 [TBL] [Abstract][Full Text] [Related]
26. Muscle lipid metabolism in two rabbit lines divergently selected for intramuscular fat. Martínez-Álvaro M; Agha S; Blasco A; Hernández P J Anim Sci; 2017 Jun; 95(6):2576-2584. PubMed ID: 28727044 [TBL] [Abstract][Full Text] [Related]
27. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro. Zhang M; Li F; Ma XF; Li WT; Jiang RR; Han RL; Li GX; Wang YB; Li ZY; Tian YD; Kang XT; Sun GR BMC Genomics; 2019 Oct; 20(1):743. PubMed ID: 31615399 [TBL] [Abstract][Full Text] [Related]
28. The influence of thiazolidinediones on adipogenesis in vitro and in vivo: potential modifiers of intramuscular adipose tissue deposition in meat animals. Hausman GJ; Poulos SP; Pringle TD; Azain MJ J Anim Sci; 2008 Apr; 86(14 Suppl):E236-43. PubMed ID: 17686902 [TBL] [Abstract][Full Text] [Related]
29. Coordinated gene expression between skeletal muscle and intramuscular adipose tissue in growing beef cattle. Roberts SL; Lancaster PA; DeSilva U; Horn GW; Krehbiel CR J Anim Sci; 2015 Sep; 93(9):4302-11. PubMed ID: 26440330 [TBL] [Abstract][Full Text] [Related]
30. Promotion of intramuscular fat accumulation in porcine muscle by nutritional regulation. Katsumata M Anim Sci J; 2011 Feb; 82(1):17-25. PubMed ID: 21269355 [TBL] [Abstract][Full Text] [Related]
31. Effect of retinoic acid on gene expression profiles of bovine intramuscular preadipocytes during adipogenesis. Mizoguchi Y; Moriya M; Taniguchi D; Hasegawa A Anim Sci J; 2014 Feb; 85(2):101-11. PubMed ID: 23911087 [TBL] [Abstract][Full Text] [Related]
32. Transcriptomic profile of semitendinosus muscle of bulls of different breed and performance. Ciecierska A; Motyl T; Sadkowski T J Appl Genet; 2020 Dec; 61(4):581-592. PubMed ID: 32851594 [TBL] [Abstract][Full Text] [Related]
33. Gene expression phenotypes for lipid metabolism and intramuscular fat in skeletal muscle of cattle. De Jager N; Hudson NJ; Reverter A; Barnard R; Cafe LM; Greenwood PL; Dalrymple BP J Anim Sci; 2013 Mar; 91(3):1112-28. PubMed ID: 23296809 [TBL] [Abstract][Full Text] [Related]
34. Estimation of the intramuscular fat content of m. longissimus thoracis in crossbred beef cattle based on live animal measurements. Nogalski Z; Pogorzelska-Przybyłek P; Białobrzewski I; Modzelewska-Kapituła M; Sobczuk-Szul M; Purwin C Meat Sci; 2017 Mar; 125():121-127. PubMed ID: 27940421 [TBL] [Abstract][Full Text] [Related]
35. Adiposity and adipogenic gene expression in four different muscles in beef cattle. Martínez Del Pino L; Arana A; Alfonso L; Mendizábal JA; Soret B PLoS One; 2017; 12(6):e0179604. PubMed ID: 28665940 [TBL] [Abstract][Full Text] [Related]
36. Review: Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals. Li X; Fu X; Yang G; Du M Animal; 2020 Feb; 14(2):312-321. PubMed ID: 31581971 [TBL] [Abstract][Full Text] [Related]
37. Lean beef: impetus for lipid modifications. Sweeten MK; Cross HR; Smith GC; Savell JW; Smith SB J Am Diet Assoc; 1990 Jan; 90(1):87-92. PubMed ID: 2404051 [TBL] [Abstract][Full Text] [Related]
38. A review of the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle. Abebe BK; Wang H; Li A; Zan L J Anim Breed Genet; 2024 May; 141(3):235-256. PubMed ID: 38146089 [TBL] [Abstract][Full Text] [Related]
39. Heat shock protein B1 and its regulator genes are negatively correlated with intramuscular fat content in the longissimus thoracis muscle of Hanwoo (Korean cattle) steers. Kim NK; Lim D; Lee SH; Cho YM; Park EW; Lee CS; Shin BS; Kim TH; Yoon D J Agric Food Chem; 2011 May; 59(10):5657-64. PubMed ID: 21524092 [TBL] [Abstract][Full Text] [Related]
40. Evidence of marbling as a single connected entity in beef striploins. Bottema MJ; Kruk ZA; Gontar A; Pitchford WS; Bottema CDK Meat Sci; 2020 Mar; 161():108004. PubMed ID: 31794922 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]