BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24491510)

  • 1. A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species.
    Martin JR; Gupta MK; Page JM; Yu F; Davidson JM; Guelcher SA; Duvall CL
    Biomaterials; 2014 Apr; 35(12):3766-76. PubMed ID: 24491510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porcine Ischemic Wound-Healing Model for Preclinical Testing of Degradable Biomaterials.
    Patil P; Martin JR; Sarett SM; Pollins AC; Cardwell NL; Davidson JM; Guelcher SA; Nanney LB; Duvall CL
    Tissue Eng Part C Methods; 2017 Nov; 23(11):754-762. PubMed ID: 28762881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species-degradable polythioketal urethane foam dressings to promote porcine skin wound repair.
    Patil P; Russo KA; McCune JT; Pollins AC; Cottam MA; Dollinger BR; DeJulius CR; Gupta MK; D'Arcy R; Colazo JM; Yu F; Bezold MG; Martin JR; Cardwell NL; Davidson JM; Thompson CM; Barbul A; Hasty AH; Guelcher SA; Duvall CL
    Sci Transl Med; 2022 Apr; 14(641):eabm6586. PubMed ID: 35442705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo degradation of poly(L: -lactide-co-glycolide) films and scaffolds.
    Pamula E; Menaszek E
    J Mater Sci Mater Med; 2008 May; 19(5):2063-70. PubMed ID: 17968505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.
    Horst M; Milleret V; Noetzli S; Gobet R; Sulser T; Eberli D
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):658-667. PubMed ID: 26669507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of biodegradable electrospun scaffolds for dermal replacement.
    Blackwood KA; McKean R; Canton I; Freeman CO; Franklin KL; Cole D; Brook I; Farthing P; Rimmer S; Haycock JW; Ryan AJ; MacNeil S
    Biomaterials; 2008 Jul; 29(21):3091-104. PubMed ID: 18448164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds.
    Hafeman AE; Zienkiewicz KJ; Zachman AL; Sung HJ; Nanney LB; Davidson JM; Guelcher SA
    Biomaterials; 2011 Jan; 32(2):419-29. PubMed ID: 20864156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of inflammatory responses and enhancement of extracellular matrix formation by vanillin-incorporated poly(lactic-co-glycolic acid) scaffolds.
    Lee Y; Kwon J; Khang G; Lee D
    Tissue Eng Part A; 2012 Oct; 18(19-20):1967-78. PubMed ID: 22551555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation.
    Mikael PE; Amini AR; Basu J; Josefina Arellano-Jimenez M; Laurencin CT; Sanders MM; Barry Carter C; Nukavarapu SP
    Biomed Mater; 2014 Jun; 9(3):035001. PubMed ID: 24687391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering.
    Baker SC; Rohman G; Southgate J; Cameron NR
    Biomaterials; 2009 Mar; 30(7):1321-8. PubMed ID: 19091399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications.
    McBane JE; Sharifpoor S; Cai K; Labow RS; Santerre JP
    Biomaterials; 2011 Sep; 32(26):6034-44. PubMed ID: 21641638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications.
    Day RM; Boccaccini AR; Maquet V; Shurey S; Forbes A; Gabe SM; Jérôme R
    J Mater Sci Mater Med; 2004 Jun; 15(6):729-34. PubMed ID: 15346742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering.
    Agrawal CM; McKinney JS; Lanctot D; Athanasiou KA
    Biomaterials; 2000 Dec; 21(23):2443-52. PubMed ID: 11055292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering.
    Wu L; Ding J
    J Biomed Mater Res A; 2005 Dec; 75(4):767-77. PubMed ID: 16121386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro.
    Shin HJ; Lee CH; Cho IH; Kim YJ; Lee YJ; Kim IA; Park KD; Yui N; Shin JW
    J Biomater Sci Polym Ed; 2006; 17(1-2):103-19. PubMed ID: 16411602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA.
    Park SH; Park DS; Shin JW; Kang YG; Kim HK; Yoon TR; Shin JW
    J Mater Sci Mater Med; 2012 Nov; 23(11):2671-8. PubMed ID: 22990617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.
    Doğan A; Demirci S; Bayir Y; Halici Z; Karakus E; Aydin A; Cadirci E; Albayrak A; Demirci E; Karaman A; Ayan AK; Gundogdu C; Sahin F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():246-53. PubMed ID: 25280703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.
    Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J
    J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.