BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24491510)

  • 21. In vitro hydrolytic and enzymatic degradation of nestlike-patterned electrospun poly(D,L-lactide-co-glycolide) scaffolds.
    Zhou X; Cai Q; Yan N; Deng X; Yang X
    J Biomed Mater Res A; 2010 Dec; 95(3):755-65. PubMed ID: 20725988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds.
    Jabbari E; He X; Valarmathi MT; Sarvestani AS; Xu W
    J Biomed Mater Res A; 2009 Apr; 89(1):124-37. PubMed ID: 18431754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering.
    Bhamidipati M; Sridharan B; Scurto AM; Detamore MS
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4892-9. PubMed ID: 24094202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering.
    Boukari Y; Qutachi O; Scurr DJ; Morris AP; Doughty SW; Billa N
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1966-1983. PubMed ID: 28777694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance comparison of PLA- and PLGA-coated porous bioceramic scaffolds: Mechanical, biodegradability, bioactivity, delivery and biocompatibility assessments.
    Maadani AM; Salahinejad E
    J Control Release; 2022 Nov; 351():1-7. PubMed ID: 36115555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro.
    Murphy WL; Kohn DH; Mooney DJ
    J Biomed Mater Res; 2000 Apr; 50(1):50-8. PubMed ID: 10644963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering.
    Xie S; Zhu Q; Wang B; Gu H; Liu W; Cui L; Cen L; Cao Y
    Biomaterials; 2010 Jul; 31(19):5100-9. PubMed ID: 20347132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradable polyester elastomers in tissue engineering.
    Webb AR; Yang J; Ameer GA
    Expert Opin Biol Ther; 2004 Jun; 4(6):801-12. PubMed ID: 15174963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a composite biomaterial system for tissue engineering applications.
    Jiang B; Akar B; Waller TM; Larson JC; Appel AA; Brey EM
    Acta Biomater; 2014 Mar; 10(3):1177-86. PubMed ID: 24321351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of solid freeform fabrication-based polycaprolactone/poly(lactic-co-glycolic acid)/collagen scaffolds on cellular activities of human adipose-derived stem cells and rat primary hepatocytes.
    Shim JH; Kim AJ; Park JY; Yi N; Kang I; Park J; Rhie JW; Cho DW
    J Mater Sci Mater Med; 2013 Apr; 24(4):1053-65. PubMed ID: 23430333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.
    Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW
    Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(D,L-lactide-co-glycolide) for tissue-engineered bone.
    Lee SJ; Lee IW; Lee YM; Lee HB; Khang G
    J Biomater Sci Polym Ed; 2004; 15(8):1003-17. PubMed ID: 15461186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds.
    Li B; Davidson JM; Guelcher SA
    Biomaterials; 2009 Jul; 30(20):3486-94. PubMed ID: 19328544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly(ε-caprolactone) and poly(D,L-lactic acid-co-glycolic acid) scaffolds used in bone tissue engineering prepared by melt compression-particulate leaching method.
    Barbanti SH; Santos AR; Zavaglia CA; Duek EA
    J Mater Sci Mater Med; 2011 Oct; 22(10):2377-85. PubMed ID: 21833608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the PLGA/gelatin ratio on the physical, chemical and biological properties of electrospun scaffolds for wound dressings.
    Vázquez N; Sánchez-Arévalo F; Maciel-Cerda A; Garnica-Palafox I; Ontiveros-Tlachi R; Chaires-Rosas C; Piñón-Zarate G; Herrera-Enríquez M; Hautefeuille M; Vera-Graziano R; Castell-Rodríguez A
    Biomed Mater; 2019 May; 14(4):045006. PubMed ID: 30959495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: comparison with control hydrophobic one.
    Oh SH; Kang SG; Lee JH
    J Mater Sci Mater Med; 2006 Feb; 17(2):131-7. PubMed ID: 16502245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The construction and investigation of PLGA artificial bone by biomimetic mineralization.
    Zhao M; Zheng Q; Wang J; Wang Y; Hao J
    J Huazhong Univ Sci Technolog Med Sci; 2005; 25(6):687-9. PubMed ID: 16696326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of surface area to volume ratio of PLGA scaffolds with different architectures on scaffold degradation characteristics and drug release kinetics.
    Chew SA; Arriaga MA; Hinojosa VA
    J Biomed Mater Res A; 2016 May; 104(5):1202-11. PubMed ID: 26780154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.