These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 24491730)
1. Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Flores FP; Singh RK; Kerr WL; Pegg RB; Kong F Food Chem; 2014 Jun; 153():272-8. PubMed ID: 24491730 [TBL] [Abstract][Full Text] [Related]
2. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Flores FP; Singh RK; Kerr WL; Phillips DR; Kong F Food Chem; 2015 Feb; 168():225-32. PubMed ID: 25172704 [TBL] [Abstract][Full Text] [Related]
3. Antioxidant and enzyme inhibitory activities of blueberry anthocyanins prepared using different solvents. Flores FP; Singh RK; Kerr WL; Pegg RB; Kong F J Agric Food Chem; 2013 May; 61(18):4441-7. PubMed ID: 23590684 [TBL] [Abstract][Full Text] [Related]
4. Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Norkaew O; Thitisut P; Mahatheeranont S; Pawin B; Sookwong P; Yodpitak S; Lungkaphin A Food Chem; 2019 Oct; 294():493-502. PubMed ID: 31126492 [TBL] [Abstract][Full Text] [Related]
5. Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Lang Y; Li B; Gong E; Shu C; Si X; Gao N; Zhang W; Cui H; Meng X Food Chem; 2021 Jan; 334():127526. PubMed ID: 32702589 [TBL] [Abstract][Full Text] [Related]
6. Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Eratte D; Wang B; Dowling K; Barrow CJ; Adhikari BP Food Funct; 2014 Nov; 5(11):2743-50. PubMed ID: 25008146 [TBL] [Abstract][Full Text] [Related]
7. Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules. Díaz DI; Beristain CI; Azuara E; Luna G; Jimenez M J Microencapsul; 2015; 32(3):247-54. PubMed ID: 26006741 [TBL] [Abstract][Full Text] [Related]
8. Release and degradation of anthocyanins and phenolics from blueberry pomace during thermal acid hydrolysis and dry heating. Bener M; Shen Y; Apak R; Finley JW; Xu Z J Agric Food Chem; 2013 Jul; 61(27):6643-9. PubMed ID: 23768160 [TBL] [Abstract][Full Text] [Related]
9. Effect of excipient wall materials on the development of ginger oleoresin microcapsules: assessing the physicochemical, antioxidant and structural properties. Ahad T; Gull A; Masoodi FA; Nissar J; Masoodi L; Sajad Wani M J Sci Food Agric; 2023 Jan; 103(1):73-82. PubMed ID: 35794734 [TBL] [Abstract][Full Text] [Related]
10. Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder. Kalušević A; Lević S; Čalija B; Pantić M; Belović M; Pavlović V; Bugarski B; Milić J; Žilić S; Nedović V J Microencapsul; 2017 Aug; 34(5):475-487. PubMed ID: 28715926 [TBL] [Abstract][Full Text] [Related]
11. Influence of production systems on phenolic characteristics and antioxidant capacity of highbush blueberry cultivars. Jung YS; Kwak IA; Lee SG; Cho HS; Cho YS; Kim DO J Food Sci; 2021 Jul; 86(7):2949-2961. PubMed ID: 34146400 [TBL] [Abstract][Full Text] [Related]
12. Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins: A mechanistic and in vitro simulation study. Zang Z; Chou S; Tian J; Lang Y; Shen Y; Ran X; Gao N; Li B Food Chem; 2021 Jan; 336():127700. PubMed ID: 32768906 [TBL] [Abstract][Full Text] [Related]
13. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products. Lim K; Ma M; Dolan KD J Food Sci; 2011 Sep; 76(7):H156-64. PubMed ID: 21806608 [TBL] [Abstract][Full Text] [Related]
14. Variation of anthocyanins and other major phenolic compounds throughout the ripening of four Portuguese blueberry (Vaccinium corymbosum L) cultivars. Silva S; Costa EM; Coelho MC; Morais RM; Pintado ME Nat Prod Res; 2017 Jan; 31(1):93-98. PubMed ID: 27686738 [TBL] [Abstract][Full Text] [Related]
15. In-vitro digestion of probiotic bacteria and omega-3 oil co-microencapsulated in whey protein isolate-gum Arabic complex coacervates. Eratte D; Dowling K; Barrow CJ; Adhikari BP Food Chem; 2017 Jul; 227():129-136. PubMed ID: 28274412 [TBL] [Abstract][Full Text] [Related]
16. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. Zheng W; Wang SY J Agric Food Chem; 2003 Jan; 51(2):502-9. PubMed ID: 12517117 [TBL] [Abstract][Full Text] [Related]
17. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process. Liu Y; Zhang D; Wu Y; Wang D; Wei Y; Wu J; Ji B Int J Food Sci Nutr; 2014 Jun; 65(4):440-8. PubMed ID: 24393027 [TBL] [Abstract][Full Text] [Related]
18. Influence of spray drying on bioactive compounds of blackberry pulp microencapsulated with arrowroot starch and gum arabic mixture. Nogueira GF; Soares CT; Martin LGP; Fakhouri FM; de Oliveira RA J Microencapsul; 2020 Jan; 37(1):65-76. PubMed ID: 31724471 [TBL] [Abstract][Full Text] [Related]
19. Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Romero-González J; Shun Ah-Hen K; Lemus-Mondaca R; Muñoz-Fariña O Food Chem; 2020 May; 313():126115. PubMed ID: 31927206 [TBL] [Abstract][Full Text] [Related]
20. In vitro gastrointestinal digestion and fecal fermentation reveal the effect of different encapsulation materials on the release, degradation and modulation of gut microbiota of blueberry anthocyanin extract. Wu Y; Han Y; Tao Y; Li D; Xie G; Show PL; Lee SY Food Res Int; 2020 Jun; 132():109098. PubMed ID: 32331662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]