These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 24491779)
1. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors. Yu ZG; Zaitouna AJ; Lai RY Anal Chim Acta; 2014 Feb; 812():176-83. PubMed ID: 24491779 [TBL] [Abstract][Full Text] [Related]
2. Effect of signaling probe conformation on sensor performance of a displacement-based electrochemical DNA sensor. Yu ZG; Lai RY Anal Chem; 2013 Mar; 85(6):3340-6. PubMed ID: 23413882 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical techniques for characterization of stem-loop probe and linear probe-based DNA sensors. Lai RY; Walker B; Stormberg K; Zaitouna AJ; Yang W Methods; 2013 Dec; 64(3):267-75. PubMed ID: 23933234 [TBL] [Abstract][Full Text] [Related]
4. Effects of DNA probe and target flexibility on the performance of a "signal-on" electrochemical DNA sensor. Wu Y; Lai RY Anal Chem; 2014 Sep; 86(17):8888-95. PubMed ID: 25110351 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization. Wan Y; Wang P; Su Y; Zhu X; Yang S; Lu J; Gao J; Fan C; Huang Q Biosens Bioelectron; 2014 May; 55():231-6. PubMed ID: 24384265 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the stem-loop and linear probe-based electrochemical DNA sensors by alternating current voltammetry and cyclic voltammetry. Yang W; Lai RY Langmuir; 2011 Dec; 27(23):14669-77. PubMed ID: 21981414 [TBL] [Abstract][Full Text] [Related]
7. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor. Lubin AA; Hunt BV; White RJ; Plaxco KW Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066 [TBL] [Abstract][Full Text] [Related]
8. Folding- and Dynamics-Based Electrochemical DNA Sensors. Lai RY Methods Enzymol; 2017; 589():221-252. PubMed ID: 28336065 [TBL] [Abstract][Full Text] [Related]
9. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors. Pang J; Zhang Z; Jin H Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458 [TBL] [Abstract][Full Text] [Related]
10. A label-free electrochemical DNA sensor using methylene blue as redox indicator based on an exonuclease III-aided target recycling strategy. Lin C; Wu Y; Luo F; Chen D; Chen X Biosens Bioelectron; 2014 Sep; 59():365-9. PubMed ID: 24752147 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of extra amino acids in peptide recognition probe to improve specificity and selectivity of an electrochemical peptide-based sensor. Zaitouna AJ; Maben AJ; Lai RY Anal Chim Acta; 2015 Jul; 886():157-64. PubMed ID: 26320648 [TBL] [Abstract][Full Text] [Related]
12. Effects of redox label location on the performance of an electrochemical aptamer-based tumor necrosis factor-alpha sensor. Mayer MD; Lai RY Talanta; 2018 Nov; 189():585-591. PubMed ID: 30086964 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor. Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883 [TBL] [Abstract][Full Text] [Related]
14. Using the synergism strategy for highly sensitive and specific electrochemical sensing of Streptococcus pneumoniae Lyt-1 gene sequence. Li F; Yu Z; Xu Y; Ma H; Zhang G; Song Y; Yan H; He X Anal Chim Acta; 2015 Jul; 886():175-81. PubMed ID: 26320650 [TBL] [Abstract][Full Text] [Related]
15. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor. Gao F; Du L; Zhang Y; Tang D; Du Y Anal Chim Acta; 2015 Jul; 883():67-73. PubMed ID: 26088778 [TBL] [Abstract][Full Text] [Related]
16. Effect of diluent chain length on the performance of the electrochemical DNA sensor at elevated temperature. Yang W; Lai RY Analyst; 2011 Jan; 136(1):134-9. PubMed ID: 20927441 [TBL] [Abstract][Full Text] [Related]
17. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor. Yu X; Yu Z; Li F; Xu Y; He X; Xu L; Shi W; Zhang G; Yan H Biosens Bioelectron; 2017 May; 91():817-823. PubMed ID: 28152488 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics. Schoukroun-Barnes LR; Wagan S; White RJ Anal Chem; 2014 Jan; 86(2):1131-7. PubMed ID: 24377296 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes. Jampasa S; Wonsawat W; Rodthongkum N; Siangproh W; Yanatatsaneejit P; Vilaivan T; Chailapakul O Biosens Bioelectron; 2014 Apr; 54():428-34. PubMed ID: 24300785 [TBL] [Abstract][Full Text] [Related]
20. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry. Guerreiro GV; Zaitouna AJ; Lai RY Anal Chim Acta; 2014 Jan; 810():79-85. PubMed ID: 24439508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]