BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 24491779)

  • 1. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors.
    Yu ZG; Zaitouna AJ; Lai RY
    Anal Chim Acta; 2014 Feb; 812():176-83. PubMed ID: 24491779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of signaling probe conformation on sensor performance of a displacement-based electrochemical DNA sensor.
    Yu ZG; Lai RY
    Anal Chem; 2013 Mar; 85(6):3340-6. PubMed ID: 23413882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical techniques for characterization of stem-loop probe and linear probe-based DNA sensors.
    Lai RY; Walker B; Stormberg K; Zaitouna AJ; Yang W
    Methods; 2013 Dec; 64(3):267-75. PubMed ID: 23933234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of DNA probe and target flexibility on the performance of a "signal-on" electrochemical DNA sensor.
    Wu Y; Lai RY
    Anal Chem; 2014 Sep; 86(17):8888-95. PubMed ID: 25110351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization.
    Wan Y; Wang P; Su Y; Zhu X; Yang S; Lu J; Gao J; Fan C; Huang Q
    Biosens Bioelectron; 2014 May; 55():231-6. PubMed ID: 24384265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the stem-loop and linear probe-based electrochemical DNA sensors by alternating current voltammetry and cyclic voltammetry.
    Yang W; Lai RY
    Langmuir; 2011 Dec; 27(23):14669-77. PubMed ID: 21981414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor.
    Lubin AA; Hunt BV; White RJ; Plaxco KW
    Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding- and Dynamics-Based Electrochemical DNA Sensors.
    Lai RY
    Methods Enzymol; 2017; 589():221-252. PubMed ID: 28336065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.
    Pang J; Zhang Z; Jin H
    Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A label-free electrochemical DNA sensor using methylene blue as redox indicator based on an exonuclease III-aided target recycling strategy.
    Lin C; Wu Y; Luo F; Chen D; Chen X
    Biosens Bioelectron; 2014 Sep; 59():365-9. PubMed ID: 24752147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of extra amino acids in peptide recognition probe to improve specificity and selectivity of an electrochemical peptide-based sensor.
    Zaitouna AJ; Maben AJ; Lai RY
    Anal Chim Acta; 2015 Jul; 886():157-64. PubMed ID: 26320648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of redox label location on the performance of an electrochemical aptamer-based tumor necrosis factor-alpha sensor.
    Mayer MD; Lai RY
    Talanta; 2018 Nov; 189():585-591. PubMed ID: 30086964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.
    Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the synergism strategy for highly sensitive and specific electrochemical sensing of Streptococcus pneumoniae Lyt-1 gene sequence.
    Li F; Yu Z; Xu Y; Ma H; Zhang G; Song Y; Yan H; He X
    Anal Chim Acta; 2015 Jul; 886():175-81. PubMed ID: 26320650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor.
    Gao F; Du L; Zhang Y; Tang D; Du Y
    Anal Chim Acta; 2015 Jul; 883():67-73. PubMed ID: 26088778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of diluent chain length on the performance of the electrochemical DNA sensor at elevated temperature.
    Yang W; Lai RY
    Analyst; 2011 Jan; 136(1):134-9. PubMed ID: 20927441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor.
    Yu X; Yu Z; Li F; Xu Y; He X; Xu L; Shi W; Zhang G; Yan H
    Biosens Bioelectron; 2017 May; 91():817-823. PubMed ID: 28152488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics.
    Schoukroun-Barnes LR; Wagan S; White RJ
    Anal Chem; 2014 Jan; 86(2):1131-7. PubMed ID: 24377296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes.
    Jampasa S; Wonsawat W; Rodthongkum N; Siangproh W; Yanatatsaneejit P; Vilaivan T; Chailapakul O
    Biosens Bioelectron; 2014 Apr; 54():428-34. PubMed ID: 24300785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry.
    Guerreiro GV; Zaitouna AJ; Lai RY
    Anal Chim Acta; 2014 Jan; 810():79-85. PubMed ID: 24439508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.