These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
548 related articles for article (PubMed ID: 24491914)
1. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. Zhao P; Yu X; Li J; Tang X; Huang Z J Biosci Bioeng; 2014 Jul; 118(1):72-7. PubMed ID: 24491914 [TBL] [Abstract][Full Text] [Related]
2. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Yu X; Zhao P; He C; Li J; Tang X; Zhou J; Huang Z Bioresour Technol; 2012 Oct; 121():256-62. PubMed ID: 22858494 [TBL] [Abstract][Full Text] [Related]
3. Microalgae from the Selenastraceae as emerging candidates for biodiesel production: a mini review. Yee W World J Microbiol Biotechnol; 2016 Apr; 32(4):64. PubMed ID: 26931604 [TBL] [Abstract][Full Text] [Related]
4. Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction. Zhao Y; Li D; Ding K; Che R; Xu JW; Zhao P; Li T; Ma H; Yu X Bioresour Technol; 2016 Jul; 211():669-76. PubMed ID: 27058402 [TBL] [Abstract][Full Text] [Related]
5. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
6. Cultivation of Chlorella sp. with livestock waste compost for lipid production. Zhu LD; Li ZH; Guo DB; Huang F; Nugroho Y; Xia K Bioresour Technol; 2017 Jan; 223():296-300. PubMed ID: 27729191 [TBL] [Abstract][Full Text] [Related]
7. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Lin TS; Wu JY Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671 [TBL] [Abstract][Full Text] [Related]
8. Effect of kelp waste extracts on the growth and lipid accumulation of microalgae. Zheng S; He M; Jiang J; Zou S; Yang W; Zhang Y; Deng J; Wang C Bioresour Technol; 2016 Feb; 201():80-8. PubMed ID: 26638137 [TBL] [Abstract][Full Text] [Related]
9. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses. Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438 [TBL] [Abstract][Full Text] [Related]
10. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Chen YH; Walker TH Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839 [TBL] [Abstract][Full Text] [Related]
11. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of Lipid Productivity and Self-flocculation by Cocultivating Monoraphidium sp. FXY-10 and Heveochlorella sp. Yu Under Mixotrophic Mode. Feng Y; Xiao J; Cui N; Zhao Y; Zhao P Appl Biochem Biotechnol; 2021 Oct; 193(10):3173-3186. PubMed ID: 34089467 [TBL] [Abstract][Full Text] [Related]
13. Improvement of lipid content of Chlorella minutissima MCC 5 for biodiesel production. Chakraborty S; Mohanty D; Ghosh S; Das D J Biosci Bioeng; 2016 Sep; 122(3):294-300. PubMed ID: 26922477 [TBL] [Abstract][Full Text] [Related]
14. Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions. Ho SH; Chang JS; Lai YY; Chen CN Bioresour Technol; 2014 Mar; 156():108-16. PubMed ID: 24491294 [TBL] [Abstract][Full Text] [Related]
15. Isolation, Identification and High-Throughput Screening of Neutral Lipid Producing Indigenous Microalgae from South African Aquatic Habitats. Gumbi ST; Majeke BM; Olaniran AO; Mutanda T Appl Biochem Biotechnol; 2017 May; 182(1):382-399. PubMed ID: 27864781 [TBL] [Abstract][Full Text] [Related]
16. Integrated lipid production, CO Du K; Wen X; Wang Z; Liang F; Luo L; Peng X; Xu Y; Geng Y; Li Y Environ Sci Pollut Res Int; 2019 Jun; 26(16):16195-16209. PubMed ID: 30972683 [TBL] [Abstract][Full Text] [Related]
17. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of oil-producing algae as potential biodiesel feedstock. Zhou X; Ge H; Xia L; Zhang D; Hu C Bioresour Technol; 2013 Apr; 134():24-9. PubMed ID: 23500555 [TBL] [Abstract][Full Text] [Related]
19. A Comparative Analysis Assessing Growth Dynamics of Locally Isolated Chlorella sorokiniana and Chlorella vulgaris for Biomass and Lipid Production with Biodiesel Potential. Usman HM; Kamaroddin MF; Sani MH; Malek NANN; Omoregie AI; Zainal A Bioresour Technol; 2024 Jul; 403():130868. PubMed ID: 38782193 [TBL] [Abstract][Full Text] [Related]
20. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria. Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]