These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279 [TBL] [Abstract][Full Text] [Related]
5. Mechanics of Atherosclerotic Plaques: Effect of Heart Rate. Zareh M; Katul R; Mohammadi H Cardiovasc Eng Technol; 2019 Jun; 10(2):344-353. PubMed ID: 30949919 [TBL] [Abstract][Full Text] [Related]
6. Numerical study to indicate the vulnerability of plaques using an idealized 2D plaque model based on plaque classification in the human coronary artery. Lee W; Choi GJ; Cho SW Med Biol Eng Comput; 2017 Aug; 55(8):1379-1387. PubMed ID: 27943103 [TBL] [Abstract][Full Text] [Related]
7. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury. Karimi A; Razaghi R; Shojaei A; Navidbakhsh M Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956 [TBL] [Abstract][Full Text] [Related]
8. Peak cap stress calculations in coronary atherosclerotic plaques with an incomplete necrotic core geometry. Kok AM; Speelman L; Virmani R; van der Steen AF; Gijsen FJ; Wentzel JJ Biomed Eng Online; 2016 May; 15(1):48. PubMed ID: 27145748 [TBL] [Abstract][Full Text] [Related]
9. Stratification of risk in thin cap fibroatheromas using peak plaque stress estimates from idealized finite element models. Dolla WJ; House JA; Marso SP Med Eng Phys; 2012 Nov; 34(9):1330-8. PubMed ID: 22342558 [TBL] [Abstract][Full Text] [Related]
10. Initial stress in biomechanical models of atherosclerotic plaques. Speelman L; Akyildiz AC; den Adel B; Wentzel JJ; van der Steen AF; Virmani R; van der Weerd L; Jukema JW; Poelmann RE; van Brummelen EH; Gijsen FJ J Biomech; 2011 Sep; 44(13):2376-82. PubMed ID: 21782179 [TBL] [Abstract][Full Text] [Related]
11. The mechanics of atherosclerotic plaque rupture by inclusion/matrix interfacial decohesion. Nguyen CM; Levy AJ J Biomech; 2010 Oct; 43(14):2702-8. PubMed ID: 20723900 [TBL] [Abstract][Full Text] [Related]
12. Effect of variability of mechanical properties on the predictive capabilities of vulnerable coronary plaques. Stefanati M; Corti A; Corino VDA; Bennett MR; Teng Z; Dubini G; Rodriguez Matas JF Comput Methods Programs Biomed; 2024 Sep; 254():108271. PubMed ID: 38878362 [TBL] [Abstract][Full Text] [Related]
13. Patient-specific Finite Element Model of Coronary Artery Stenting. Razaghi R; Karimi A; Taheri RA Curr Pharm Des; 2018; 24(37):4492-4502. PubMed ID: 30514186 [TBL] [Abstract][Full Text] [Related]
14. Local anisotropic mechanical properties of human carotid atherosclerotic plaques - characterisation by micro-indentation and inverse finite element analysis. Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP J Mech Behav Biomed Mater; 2015 Mar; 43():59-68. PubMed ID: 25553556 [TBL] [Abstract][Full Text] [Related]
15. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Cilla M; Peña E; Martínez MA Biomech Model Mechanobiol; 2012 Sep; 11(7):1001-13. PubMed ID: 22227796 [TBL] [Abstract][Full Text] [Related]
16. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Faghihi S; Shojaei A; Hassani K Proc Inst Mech Eng H; 2013 Feb; 227(2):148-61. PubMed ID: 23513986 [TBL] [Abstract][Full Text] [Related]
17. Relationship between palpography and virtual histology in patients with acute coronary syndromes. Brugaletta S; Garcia-Garcia HM; Serruys PW; Maehara A; Farooq V; Mintz GS; de Bruyne B; Marso SP; Verheye S; Dudek D; Hamm CW; Farhat N; Schiele F; McPherson J; Lerman A; Moreno PR; Wennerblom B; Fahy M; Templin B; Morel MA; van Es GA; Stone GW JACC Cardiovasc Imaging; 2012 Mar; 5(3 Suppl):S19-27. PubMed ID: 22421227 [TBL] [Abstract][Full Text] [Related]
18. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Maldonado N; Kelly-Arnold A; Vengrenyuk Y; Laudier D; Fallon JT; Virmani R; Cardoso L; Weinbaum S Am J Physiol Heart Circ Physiol; 2012 Sep; 303(5):H619-28. PubMed ID: 22777419 [TBL] [Abstract][Full Text] [Related]
19. An investigation into the critical role of fibre orientation in the ultimate tensile strength and stiffness of human carotid plaque caps. Johnston RD; Gaul RT; Lally C Acta Biomater; 2021 Apr; 124():291-300. PubMed ID: 33571712 [TBL] [Abstract][Full Text] [Related]
20. Finite element modeling and intravascular ultrasound elastography of vulnerable plaques: parameter variation. Baldewsing RA; de Korte CL; Schaar JA; Mastik F; van der Steen AF Ultrasonics; 2004 Apr; 42(1-9):723-9. PubMed ID: 15047374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]