BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24492008)

  • 41. [Hypermethylation and regulation of expression of secreted frizzled-related protein genes in colorectal tumor].
    Qi J; Zhu YQ; Luo J; Tao WH; Zhang JM
    Zhonghua Zhong Liu Za Zhi; 2007 Nov; 29(11):842-5. PubMed ID: 18396643
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TPX2 and AURKA promote 20q amplicon-driven colorectal adenoma to carcinoma progression.
    Sillars-Hardebol AH; Carvalho B; Tijssen M; Beliën JA; de Wit M; Delis-van Diemen PM; Pontén F; van de Wiel MA; Fijneman RJ; Meijer GA
    Gut; 2012 Nov; 61(11):1568-75. PubMed ID: 22207630
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coronin 2A (CRN5) expression is associated with colorectal adenoma-adenocarcinoma sequence and oncogenic signalling.
    Rastetter RH; Blömacher M; Drebber U; Marko M; Behrens J; Solga R; Hojeili S; Bhattacharya K; Wunderlich CM; Wunderlich FT; Odenthal M; Ziemann A; Eichinger L; Clemen CS
    BMC Cancer; 2015 Sep; 15():638. PubMed ID: 26373535
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21.
    Yang Y; Weng W; Peng J; Hong L; Yang L; Toiyama Y; Gao R; Liu M; Yin M; Pan C; Li H; Guo B; Zhu Q; Wei Q; Moyer MP; Wang P; Cai S; Goel A; Qin H; Ma Y
    Gastroenterology; 2017 Mar; 152(4):851-866.e24. PubMed ID: 27876571
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clinical impacts of mammalian target of rapamycin expression in human colorectal cancers.
    Alqurashi N; Gopalan V; Smith RA; Lam AK
    Hum Pathol; 2013 Oct; 44(10):2089-96. PubMed ID: 23773481
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Galectin-4 functions as a tumor suppressor of human colorectal cancer.
    Satelli A; Rao PS; Thirumala S; Rao US
    Int J Cancer; 2011 Aug; 129(4):799-809. PubMed ID: 21064109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Frequent alteration of the tumor suppressor gene APC in sporadic canine colorectal tumors.
    Youmans L; Taylor C; Shin E; Harrell A; Ellis AE; Séguin B; Ji X; Zhao S
    PLoS One; 2012; 7(12):e50813. PubMed ID: 23251390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wild-type APC regulates caveolin-1 expression in human colon adenocarcinoma cell lines via FOXO1a and C-myc.
    Roy UK; Henkhaus RS; Ignatenko NA; Mora J; Fultz KE; Gerner EW
    Mol Carcinog; 2008 Dec; 47(12):947-55. PubMed ID: 18444242
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Epigenetic Inactivation of α-Internexin Accelerates Microtubule Polymerization in Colorectal Cancer.
    Li Y; Bai L; Yu H; Cai D; Wang X; Huang B; Peng S; Huang M; Cao G; Kaz AM; Grady WM; Wang J; Luo Y
    Cancer Res; 2020 Dec; 80(23):5203-5215. PubMed ID: 33051252
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FAM83D knockdown regulates proliferation, migration and invasion of colorectal cancer through inhibiting FBXW7/Notch-1 signalling pathway.
    Mu Y; Zou H; Chen B; Fan Y; Luo S
    Biomed Pharmacother; 2017 Jun; 90():548-554. PubMed ID: 28407575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maspin expression was involved in colorectal adenoma-adenocarcinoma sequence and liver metastasis of tumors.
    Zheng H; Tsuneyama K; Cheng C; Takahashi H; Cui Z; Murai Y; Nomoto K; Takano Y
    Anticancer Res; 2007; 27(1A):259-65. PubMed ID: 17352241
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes.
    Louie RK; Bahmanyar S; Siemers KA; Votin V; Chang P; Stearns T; Nelson WJ; Barth AI
    J Cell Sci; 2004 Mar; 117(Pt 7):1117-28. PubMed ID: 14970257
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolutionary biologic changes of gut microbiota in an 'adenoma-carcinoma sequence' mouse colorectal cancer model induced by 1, 2-Dimethylhydrazine.
    Sun T; Liu S; Zhou Y; Yao Z; Zhang D; Cao S; Wei Z; Tan B; Li Y; Lian Z; Wang S
    Oncotarget; 2017 Jan; 8(1):444-457. PubMed ID: 27880935
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex.
    Shimokawa T; Furukawa Y; Sakai M; Li M; Miwa N; Lin YM; Nakamura Y
    Cancer Res; 2003 Oct; 63(19):6116-20. PubMed ID: 14559787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TACC3 promotes colorectal cancer tumourigenesis and correlates with poor prognosis.
    Du Y; Liu L; Wang C; Kuang B; Yan S; Zhou A; Wen C; Chen J; Wu Y; Yang X; Feng G; Liu B; Iwamoto A; Zeng M; Wang J; Zhang X; Liu H
    Oncotarget; 2016 Jul; 7(27):41885-41897. PubMed ID: 27248823
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hypoxia-inducible adenosine A2B receptor modulates proliferation of colon carcinoma cells.
    Ma DF; Kondo T; Nakazawa T; Niu DF; Mochizuki K; Kawasaki T; Yamane T; Katoh R
    Hum Pathol; 2010 Nov; 41(11):1550-7. PubMed ID: 20619442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression of survivin protein in human colorectal carcinogenesis.
    Lin LJ; Zheng CQ; Jin Y; Ma Y; Jiang WG; Ma T
    World J Gastroenterol; 2003 May; 9(5):974-7. PubMed ID: 12717841
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deregulation of CRAD-controlled cytoskeleton initiates mucinous colorectal cancer via β-catenin.
    Jung YS; Wang W; Jun S; Zhang J; Srivastava M; Kim MJ; Lien EM; Shang J; Chen J; McCrea PD; Zhang S; Park JI
    Nat Cell Biol; 2018 Nov; 20(11):1303-1314. PubMed ID: 30361697
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Expression and significance of APC, beta-catenin, C-myc, and Cyclin D1 proteins in colorectal carcinoma].
    Dai WB; Ren ZP; Chen WL; DU J; Shi Z; Tang DY
    Ai Zheng; 2007 Sep; 26(9):963-6. PubMed ID: 17927853
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Notch1 counteracts WNT/β-catenin signaling through chromatin modification in colorectal cancer.
    Kim HA; Koo BK; Cho JH; Kim YY; Seong J; Chang HJ; Oh YM; Stange DE; Park JG; Hwang D; Kong YY
    J Clin Invest; 2012 Sep; 122(9):3248-59. PubMed ID: 22863622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.