These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24492075)

  • 21. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience.
    Salinas KJ; Huh CYL; Zeitoun JH; Gandhi SP
    J Neurosci; 2021 Feb; 41(7):1470-1488. PubMed ID: 33376158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional cell classes and functional architecture in the early visual system of a highly visual rodent.
    Van Hooser SD; Heimel JA; Nelson SB
    Prog Brain Res; 2005; 149():127-45. PubMed ID: 16226581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnitude, time course, and specificity of rapid adaptation across mouse visual areas.
    Jin M; Glickfeld LL
    J Neurophysiol; 2020 Jul; 124(1):245-258. PubMed ID: 32584636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gain control by layer six in cortical circuits of vision.
    Olsen SR; Bortone DS; Adesnik H; Scanziani M
    Nature; 2012 Feb; 483(7387):47-52. PubMed ID: 22367547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The functional organization of cortical feedback inputs to primary visual cortex.
    Marques T; Nguyen J; Fioreze G; Petreanu L
    Nat Neurosci; 2018 May; 21(5):757-764. PubMed ID: 29662217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complex Visual Motion Representation in Mouse Area V1.
    Palagina G; Meyer JF; Smirnakis SM
    J Neurosci; 2017 Jan; 37(1):164-183. PubMed ID: 28053039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual processing: parallel-er and parallel-er.
    Born RT
    Curr Biol; 2001 Jul; 11(14):R566-8. PubMed ID: 11509256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the neural correlates of visual perception.
    Pollen DA
    Cereb Cortex; 1999; 9(1):4-19. PubMed ID: 10022491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex.
    de Vries SEJ; Lecoq JA; Buice MA; Groblewski PA; Ocker GK; Oliver M; Feng D; Cain N; Ledochowitsch P; Millman D; Roll K; Garrett M; Keenan T; Kuan L; Mihalas S; Olsen S; Thompson C; Wakeman W; Waters J; Williams D; Barber C; Berbesque N; Blanchard B; Bowles N; Caldejon SD; Casal L; Cho A; Cross S; Dang C; Dolbeare T; Edwards M; Galbraith J; Gaudreault N; Gilbert TL; Griffin F; Hargrave P; Howard R; Huang L; Jewell S; Keller N; Knoblich U; Larkin JD; Larsen R; Lau C; Lee E; Lee F; Leon A; Li L; Long F; Luviano J; Mace K; Nguyen T; Perkins J; Robertson M; Seid S; Shea-Brown E; Shi J; Sjoquist N; Slaughterbeck C; Sullivan D; Valenza R; White C; Williford A; Witten DM; Zhuang J; Zeng H; Farrell C; Ng L; Bernard A; Phillips JW; Reid RC; Koch C
    Nat Neurosci; 2020 Jan; 23(1):138-151. PubMed ID: 31844315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional characterization and spatial clustering of visual cortical neurons in the predatory grasshopper mouse
    Scholl B; Pattadkal JJ; Rowe A; Priebe NJ
    J Neurophysiol; 2017 Mar; 117(3):910-918. PubMed ID: 27927787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex.
    Grossberg S
    Spat Vis; 1999; 12(2):163-85. PubMed ID: 10221426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reappraising the functional implications of the primate visual anatomical hierarchy.
    Hegdé J; Felleman DJ
    Neuroscientist; 2007 Oct; 13(5):416-21. PubMed ID: 17901251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The human visual cortex.
    Grill-Spector K; Malach R
    Annu Rev Neurosci; 2004; 27():649-77. PubMed ID: 15217346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Higher-Order Thalamic Circuits Channel Parallel Streams of Visual Information in Mice.
    Bennett C; Gale SD; Garrett ME; Newton ML; Callaway EM; Murphy GJ; Olsen SR
    Neuron; 2019 Apr; 102(2):477-492.e5. PubMed ID: 30850257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Central mechanisms of vision: parallel processing.
    Dow BM
    Fed Proc; 1976 Jan; 35(1):54-9. PubMed ID: 812733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1.
    Matsui T; Ohki K
    Front Neural Circuits; 2013; 7():143. PubMed ID: 24068987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primary visual cortex and visual awareness.
    Tong F
    Nat Rev Neurosci; 2003 Mar; 4(3):219-29. PubMed ID: 12612634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The autonomy of the visual systems and the modularity of conscious vision.
    Zeki S; Bartels A
    Philos Trans R Soc Lond B Biol Sci; 1998 Nov; 353(1377):1911-4. PubMed ID: 9854263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct recruitment of feedforward and recurrent pathways across higher-order areas of mouse visual cortex.
    Li JY; Hass CA; Matthews I; Kristl AC; Glickfeld LL
    Curr Biol; 2021 Nov; 31(22):5024-5036.e5. PubMed ID: 34637748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A memory system in the monkey.
    Mishkin M
    Philos Trans R Soc Lond B Biol Sci; 1982 Jun; 298(1089):83-95. PubMed ID: 6125978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.