These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
639 related articles for article (PubMed ID: 24492301)
1. Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody. Monnet C; Jorieux S; Souyris N; Zaki O; Jacquet A; Fournier N; Crozet F; de Romeuf C; Bouayadi K; Urbain R; Behrens CK; Mondon P; Fontayne A MAbs; 2014; 6(2):422-36. PubMed ID: 24492301 [TBL] [Abstract][Full Text] [Related]
2. Selection of IgG Variants with Increased FcRn Binding Using Random and Directed Mutagenesis: Impact on Effector Functions. Monnet C; Jorieux S; Urbain R; Fournier N; Bouayadi K; De Romeuf C; Behrens CK; Fontayne A; Mondon P Front Immunol; 2015; 6():39. PubMed ID: 25699055 [TBL] [Abstract][Full Text] [Related]
3. Identification of IgG(1) variants with increased affinity to FcγRIIIa and unaltered affinity to FcγRI and FcRn: comparison of soluble receptor-based and cell-based binding assays. Lu Y; Vernes JM; Chiang N; Ou Q; Ding J; Adams C; Hong K; Truong BT; Ng D; Shen A; Nakamura G; Gong Q; Presta LG; Beresini M; Kelley B; Lowman H; Wong WL; Meng YG J Immunol Methods; 2011 Feb; 365(1-2):132-41. PubMed ID: 21185301 [TBL] [Abstract][Full Text] [Related]
5. A novel in vitro assay to predict neonatal Fc receptor-mediated human IgG half-life. Souders CA; Nelson SC; Wang Y; Crowley AR; Klempner MS; Thomas W MAbs; 2015; 7(5):912-21. PubMed ID: 26018774 [TBL] [Abstract][Full Text] [Related]
6. FcRn, but not FcγRs, drives maternal-fetal transplacental transport of human IgG antibodies. Borghi S; Bournazos S; Thulin NK; Li C; Gajewski A; Sherwood RW; Zhang S; Harris E; Jagannathan P; Wang LX; Ravetch JV; Wang TT Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12943-12951. PubMed ID: 32461366 [TBL] [Abstract][Full Text] [Related]
7. Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life. Mackness BC; Jaworski JA; Boudanova E; Park A; Valente D; Mauriac C; Pasquier O; Schmidt T; Kabiri M; Kandira A; Radošević K; Qiu H MAbs; 2019 Oct; 11(7):1276-1288. PubMed ID: 31216930 [TBL] [Abstract][Full Text] [Related]
8. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). Dall'Acqua WF; Kiener PA; Wu H J Biol Chem; 2006 Aug; 281(33):23514-24. PubMed ID: 16793771 [TBL] [Abstract][Full Text] [Related]
9. Fc Engineering of Human IgG1 for Altered Binding to the Neonatal Fc Receptor Affects Fc Effector Functions. Grevys A; Bern M; Foss S; Bratlie DB; Moen A; Gunnarsen KS; Aase A; Michaelsen TE; Sandlie I; Andersen JT J Immunol; 2015 Jun; 194(11):5497-508. PubMed ID: 25904551 [TBL] [Abstract][Full Text] [Related]
10. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. Piche-Nicholas NM; Avery LB; King AC; Kavosi M; Wang M; O'Hara DM; Tchistiakova L; Katragadda M MAbs; 2018 Jan; 10(1):81-94. PubMed ID: 28991504 [TBL] [Abstract][Full Text] [Related]
11. Neonatal Fc receptor (FcRn): a novel target for therapeutic antibodies and antibody engineering. Wang Y; Tian Z; Thirumalai D; Zhang X J Drug Target; 2014 May; 22(4):269-78. PubMed ID: 24404896 [TBL] [Abstract][Full Text] [Related]
12. Fc Engineering: Tailored Synthetic Human IgG1-Fc Repertoire for High-Affinity Interaction with FcRn at pH 6.0. Saxena A; Bai B; Hou SC; Jiang L; Ying T; Miersch S; Sidhu SS; Wu D Methods Mol Biol; 2018; 1827():399-417. PubMed ID: 30196509 [TBL] [Abstract][Full Text] [Related]
13. Cross-species analysis of Fc engineered anti-Lewis-Y human IgG1 variants in human neonatal receptor transgenic mice reveal importance of S254 and Y436 in binding human neonatal Fc receptor. Burvenich IJ; Farrugia W; Lee FT; Catimel B; Liu Z; Makris D; Cao D; O'Keefe GJ; Brechbiel MW; King D; Spirkoska V; Allan LC; Ramsland PA; Scott AM MAbs; 2016; 8(4):775-86. PubMed ID: 27030023 [TBL] [Abstract][Full Text] [Related]
14. pH-dependent binding engineering reveals an FcRn affinity threshold that governs IgG recycling. Borrok MJ; Wu Y; Beyaz N; Yu XQ; Oganesyan V; Dall'Acqua WF; Tsui P J Biol Chem; 2015 Feb; 290(7):4282-90. PubMed ID: 25538249 [TBL] [Abstract][Full Text] [Related]
15. Design and characterization of novel dual Fc antibody with enhanced avidity for Fc receptors. Goulet DR; Zwolak A; Williams JA; Chiu ML; Atkins WM Proteins; 2020 May; 88(5):689-697. PubMed ID: 31702857 [TBL] [Abstract][Full Text] [Related]
16. Methods to engineer and identify IgG1 variants with improved FcRn binding or effector function. Kelley RF; Meng YG Methods Mol Biol; 2012; 901():277-93. PubMed ID: 22723108 [TBL] [Abstract][Full Text] [Related]
17. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC. Repp R; Kellner C; Muskulus A; Staudinger M; Nodehi SM; Glorius P; Akramiene D; Dechant M; Fey GH; van Berkel PH; van de Winkel JG; Parren PW; Valerius T; Gramatzki M; Peipp M J Immunol Methods; 2011 Oct; 373(1-2):67-78. PubMed ID: 21855548 [TBL] [Abstract][Full Text] [Related]
19. Extended plasma half-life of albumin-binding domain fused human IgA upon pH-dependent albumin engagement of human FcRn Mester S; Evers M; Meyer S; Nilsen J; Greiff V; Sandlie I; Leusen J; Andersen JT MAbs; 2021; 13(1):1893888. PubMed ID: 33691596 [TBL] [Abstract][Full Text] [Related]
20. Enhanced FcRn-dependent transepithelial delivery of IgG by Fc-engineering and polymerization. Foss S; Grevys A; Sand KMK; Bern M; Blundell P; Michaelsen TE; Pleass RJ; Sandlie I; Andersen JT J Control Release; 2016 Feb; 223():42-52. PubMed ID: 26718855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]