BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24492379)

  • 1. Extraction and characterization of glucosinolates and isothiocyanates from rape seed meal.
    Ishikawa S; Maruyama A; Yamamoto Y; Hara S
    J Oleo Sci; 2014; 63(3):303-8. PubMed ID: 24492379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-Assisted versus Conventional Isolation of Glucosinolate Degradation Products from
    Blažević I; Đulović A; Čikeš Čulić V; Popović M; Guillot X; Burčul F; Rollin P
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32024150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucosinolate content and isothiocyanate evolution--two measures of the biofumigation potential of plants.
    Warton B; Matthiessen JN; Shackleton MA
    J Agric Food Chem; 2001 Nov; 49(11):5244-50. PubMed ID: 11714311
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Đulović A; Burčul F; Čulić VČ; Ruščić M; Brzović P; Montaut S; Rollin P; Blažević I
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myrosinase-generated isothiocyanate from glucosinolates: isolation, characterization and in vitro antiproliferative studies.
    Leoni O; Iori R; Palmieri S; Esposito E; Menegatti E; Cortesi R; Nastruzzi C
    Bioorg Med Chem; 1997 Sep; 5(9):1799-806. PubMed ID: 9354235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds.
    Bell L; Oloyede OO; Lignou S; Wagstaff C; Methven L
    Mol Nutr Food Res; 2018 Sep; 62(18):e1700990. PubMed ID: 29578640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction and identification of isothiocyanates from broccolini seeds.
    Zhang B; Wang X; Yang Y; Zhang X
    Nat Prod Commun; 2011 Jan; 6(1):65-6. PubMed ID: 21366048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of Glucosinolate Thermal Degradation and Roasted Rapeseed Oil Volatile Odor.
    Mao X; Zhao X; Huyan Z; Liu T; Yu X
    J Agric Food Chem; 2019 Oct; 67(40):11187-11197. PubMed ID: 31552744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Analysis of Glucosinolates and Isothiocyanates by Reversed-Phase Ultra-High-Performance Liquid Chromatography-Electron Spray Ionization-Tandem Mass Spectrometry.
    Andini S; Araya-Cloutier C; Sanders M; Vincken JP
    J Agric Food Chem; 2020 Mar; 68(10):3121-3131. PubMed ID: 32053364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and degradation kinetics of the biofumigant benzyl isothiocyanate in soil.
    Gimsing AL; Poulsen JL; Pedersen HL; Hansen HC
    Environ Sci Technol; 2007 Jun; 41(12):4271-6. PubMed ID: 17626424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic changes in glucosinolate-derived volatiles by heat-treatment and myrosinase activity in nakajimana (Brassica rapa L. cv. nakajimana).
    Kato M; Imayoshi Y; Iwabuchi H; Shimomura K
    J Agric Food Chem; 2011 Oct; 59(20):11034-9. PubMed ID: 21913666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes.
    Jhingan S; Harloff HJ; Abbadi A; Welsch C; Blümel M; Tasdemir D; Jung C
    Sci Rep; 2023 Feb; 13(1):2344. PubMed ID: 36759657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic profiling of glucosinolates and their hydrolysis products in a germplasm collection of Brassica rapa turnips.
    Klopsch R; Witzel K; Börner A; Schreiner M; Hanschen FS
    Food Res Int; 2017 Oct; 100(Pt 3):392-403. PubMed ID: 28964362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of roasting on the thermal degradation pathway in the glucosinolates of fragrant rapeseed oil: Implications to flavour profiles.
    Zhang L; Chen J; Zhao X; Wang Y; Yu X
    Food Chem X; 2022 Dec; 16():100503. PubMed ID: 36519104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis).
    Kim YB; Li X; Kim SJ; Kim HH; Lee J; Kim H; Park SU
    Molecules; 2013 Jul; 18(7):8682-95. PubMed ID: 23881053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of the glucosinolate-myrosinase system in tuber mustard (Brassica juncea var. tumida) during pickling and its relationship with bacterial communities and fermentation characteristics.
    Liu D; Zhang C; Zhang J; Xin X; Wu Q
    Food Res Int; 2022 Nov; 161():111879. PubMed ID: 36192911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities.
    Nguyen VPT; Stewart J; Lopez M; Ioannou I; Allais F
    Molecules; 2020 Oct; 25(19):. PubMed ID: 33022970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Biochemical Evaluation of an Artificial, Fluorescent Glucosinolate (GSL).
    Glindemann CP; Backenköhler A; Strieker M; Wittstock U; Klahn P
    Chembiochem; 2019 Sep; 20(18):2341-2345. PubMed ID: 30980446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.
    Sansom CE; Jones VS; Joyce NI; Smallfield BM; Perry NB; van Klink JW
    J Agric Food Chem; 2015 Feb; 63(6):1833-8. PubMed ID: 25625566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening Brassica species for glucosinolate content.
    Antonious GF; Bomford M; Vincelli P
    J Environ Sci Health B; 2009 Mar; 44(3):311-6. PubMed ID: 19280485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.