These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24492473)

  • 1. Proposed formation and dynamical signature of a chiral Bose liquid in an optical lattice.
    Li X; Paramekanti A; Hemmerich A; Liu WV
    Nat Commun; 2014; 5():3205. PubMed ID: 24492473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral magnetism and spontaneous spin Hall effect of interacting Bose superfluids.
    Li X; Natu SS; Paramekanti A; Das Sarma S
    Nat Commun; 2014 Oct; 5():5174. PubMed ID: 25300774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotation-Symmetry-Enforced Coupling of Spin and Angular Momentum for p-Orbital Bosons.
    Li Y; Yuan J; Hemmerich A; Li X
    Phys Rev Lett; 2018 Aug; 121(9):093401. PubMed ID: 30230858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum stripe ordering in optical lattices.
    Wu C; Liu WV; Moore J; Sarma SD
    Phys Rev Lett; 2006 Nov; 97(19):190406. PubMed ID: 17155601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Staggered-vortex superfluid of ultracold bosons in an optical lattice.
    Lim LK; Smith CM; Hemmerich A
    Phys Rev Lett; 2008 Apr; 100(13):130402. PubMed ID: 18517921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong interaction effects and criticality of bosons in shaken optical lattices.
    Zheng W; Liu B; Miao J; Chin C; Zhai H
    Phys Rev Lett; 2014 Oct; 113(15):155303. PubMed ID: 25375720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-reversal symmetry breaking of p-orbital bosons in a one-dimensional optical lattice.
    Li X; Zhang Z; Liu WV
    Phys Rev Lett; 2012 Apr; 108(17):175302. PubMed ID: 22680880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing chiral superfluid order by matter-wave interference.
    Kock T; Ölschläger M; Ewerbeck A; Huang WM; Mathey L; Hemmerich A
    Phys Rev Lett; 2015 Mar; 114(11):115301. PubMed ID: 25839285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase diagram for a Bose-Einstein condensate moving in an optical lattice.
    Mun J; Medley P; Campbell GK; Marcassa LG; Pritchard DE; Ketterle W
    Phys Rev Lett; 2007 Oct; 99(15):150604. PubMed ID: 17995152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Certifying the Adiabatic Preparation of Ultracold Lattice Bosons in the Vicinity of the Mott Transition.
    Carcy C; Hercé G; Tenart A; Roscilde T; Clément D
    Phys Rev Lett; 2021 Jan; 126(4):045301. PubMed ID: 33576669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
    Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I
    Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strongly Interacting Bosons in a Two-Dimensional Quasicrystal Lattice.
    Gautier R; Yao H; Sanchez-Palencia L
    Phys Rev Lett; 2021 Mar; 126(11):110401. PubMed ID: 33798372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mott domains of bosons confined on optical lattices.
    Batrouni GG; Rousseau V; Scalettar RT; Rigol M; Muramatsu A; Denteneer PJ; Troyer M
    Phys Rev Lett; 2002 Sep; 89(11):117203. PubMed ID: 12225165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feshbach resonance in optical lattices and the quantum Ising model.
    Bhaseen MJ; Silver AO; Hohenadler M; Simons BD
    Phys Rev Lett; 2009 Dec; 103(26):265302. PubMed ID: 20366320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases.
    Gemelke N; Zhang X; Hung CL; Chin C
    Nature; 2009 Aug; 460(7258):995-8. PubMed ID: 19693080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunneling-induced restoration of the degeneracy and the time-reversal symmetry breaking in optical lattices.
    Sowiński T; Łącki M; Dutta O; Pietraszewicz J; Sierant P; Gajda M; Zakrzewski J; Lewenstein M
    Phys Rev Lett; 2013 Nov; 111(21):215302. PubMed ID: 24313497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frustrated Extended Bose-Hubbard Model and Deconfined Quantum Critical Points with Optical Lattices at the Antimagic Wavelength.
    Baldelli N; Cabrera CR; Julià-Farré S; Aidelsburger M; Barbiero L
    Phys Rev Lett; 2024 Apr; 132(15):153401. PubMed ID: 38682994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for an atomic chiral superfluid with topological excitations.
    Wang XQ; Luo GQ; Liu JY; Liu WV; Hemmerich A; Xu ZF
    Nature; 2021 Aug; 596(7871):227-231. PubMed ID: 34381235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Bose and Anderson glasses in optical lattices.
    Damski B; Zakrzewski J; Santos L; Zoller P; Lewenstein M
    Phys Rev Lett; 2003 Aug; 91(8):080403. PubMed ID: 14525226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signature of Mott-insulator transition with ultracold fermions in a one-dimensional optical lattice.
    Liu XJ; Drummond PD; Hu H
    Phys Rev Lett; 2005 Apr; 94(13):136406. PubMed ID: 15904012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.