These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24492524)

  • 21. Donor-acceptor small molecules for organic photovoltaics: single-atom substitution (Se or S).
    He X; Cao B; Hauger TC; Kang M; Gusarov S; Luber EJ; Buriak JM
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8188-99. PubMed ID: 25808481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An electron-deficient small molecule accessible from sustainable synthesis and building blocks for use as a fullerene alternative in organic photovoltaics.
    McAfee SM; Topple JM; Payne AJ; Sun JP; Hill IG; Welch GC
    Chemphyschem; 2015 Apr; 16(6):1190-202. PubMed ID: 25418978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbazole-based green and blue-BODIPY dyads and triads as donors for bulk heterojunction organic solar cells.
    Yang J; Devillers CH; Fleurat-Lessard P; Jiang H; Wang S; Gros CP; Gupta G; Sharma GD; Xu H
    Dalton Trans; 2020 May; 49(17):5606-5617. PubMed ID: 32285049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bulk heterojunction organic solar cells fabricated by oblique angle deposition.
    Zhu L; Zhao T; Li K; Sun W; Xing Y
    Phys Chem Chem Phys; 2015 Nov; 17(43):28765-9. PubMed ID: 26447331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing indaceno thiophene-based three new molecules containing non-fullerene acceptors as strong electron withdrawing groups with DFT approaches.
    Ajmal M; Ali U; Javed A; Tariq A; Arif Z; Iqbal J; Shoaib M; Ahmed T
    J Mol Model; 2019 Sep; 25(10):311. PubMed ID: 31512040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices.
    Huang L; Wang G; Zhou W; Fu B; Cheng X; Zhang L; Yuan Z; Xiong S; Zhang L; Xie Y; Zhang A; Zhang Y; Ma W; Li W; Zhou Y; Reichmanis E; Chen Y
    ACS Nano; 2018 May; 12(5):4440-4452. PubMed ID: 29678114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular electron acceptors for efficient fullerene-free organic solar cells.
    Li S; Zhang Z; Shi M; Li CZ; Chen H
    Phys Chem Chem Phys; 2017 Feb; 19(5):3440-3458. PubMed ID: 28094830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Materials for the active layer of organic photovoltaics: ternary solar cell approach.
    Chen YC; Hsu CY; Lin RY; Ho KC; Lin JT
    ChemSusChem; 2013 Jan; 6(1):20-35. PubMed ID: 23288712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution-processed bulk-heterojunction photovoltaic cells based on dendritic and star-shaped D-pi-A organic dyes.
    Wang JL; He Z; Wu H; Cui H; Li Y; Gong Q; Cao Y; Pei J
    Chem Asian J; 2010 Jun; 5(6):1455-65. PubMed ID: 20449865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oligoselenophene derivatives functionalized with a diketopyrrolopyrrole core for molecular bulk heterojunction solar cells.
    Mazzio KA; Yuan M; Okamoto K; Luscombe CK
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):271-8. PubMed ID: 21218797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage.
    Khlyabich PP; Burkhart B; Thompson BC
    J Am Chem Soc; 2011 Sep; 133(37):14534-7. PubMed ID: 21854034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells.
    Street RA; Davies D; Khlyabich PP; Burkhart B; Thompson BC
    J Am Chem Soc; 2013 Jan; 135(3):986-9. PubMed ID: 23286650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells.
    Roquet S; Cravino A; Leriche P; Alévêque O; Frère P; Roncali J
    J Am Chem Soc; 2006 Mar; 128(10):3459-66. PubMed ID: 16522126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.
    Kang TE; Cho HH; Cho CH; Kim KH; Kang H; Lee M; Lee S; Kim B; Im C; Kim BJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):861-8. PubMed ID: 23289501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recombination in Organic Bulk Heterojunction Solar Cells: Small Dependence of Interfacial Charge Transfer Kinetics on Fullerene Affinity.
    Guerrero A; Marchesi LF; Boix PP; Bisquert J; Garcia-Belmonte G
    J Phys Chem Lett; 2012 May; 3(10):1386-92. PubMed ID: 26286787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Grooved nanowires from self-assembling hairpin molecules for solar cells.
    Tevis ID; Tsai WW; Palmer LC; Aytun T; Stupp SI
    ACS Nano; 2012 Mar; 6(3):2032-40. PubMed ID: 22397738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near infrared organic semiconducting materials for bulk heterojunction and dye-sensitized solar cells.
    Singh SP; Sharma GD
    Chem Rec; 2014 Jun; 14(3):419-81. PubMed ID: 24890453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Role of the Axial Substituent in Subphthalocyanine Acceptors for Bulk-Heterojunction Solar Cells.
    Duan C; Zango G; García Iglesias M; Colberts FJ; Wienk MM; Martínez-Díaz MV; Janssen RA; Torres T
    Angew Chem Int Ed Engl; 2017 Jan; 56(1):148-152. PubMed ID: 27891720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.