These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 24492660)
1. Defining the membrane disruption mechanism of kalata B1 via coarse-grained molecular dynamics simulations. Nawae W; Hannongbua S; Ruengjitchatchawalya M Sci Rep; 2014 Feb; 4():3933. PubMed ID: 24492660 [TBL] [Abstract][Full Text] [Related]
2. Dynamic scenario of membrane binding process of kalata b1. Nawae W; Hannongbua S; Ruengjitchatchawalya M PLoS One; 2014; 9(12):e114473. PubMed ID: 25473840 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulations support a preference of cyclotide kalata B1 for phosphatidylethanolamine phospholipids. Roseli RB; Huang YH; Henriques ST; Kaas Q; Craik DJ Biochim Biophys Acta Biomembr; 2024 Mar; 1866(3):184268. PubMed ID: 38191035 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics exploration of poration and leaking caused by Kalata B1 in HIV-infected cell membrane compared to host and HIV membranes. Nawae W; Hannongbua S; Ruengjitchatchawalya M Sci Rep; 2017 Jun; 7(1):3638. PubMed ID: 28620219 [TBL] [Abstract][Full Text] [Related]
5. Kalata B1 and Kalata B2 Have a Surfactant-Like Activity in Phosphatidylethanolomine-Containing Lipid Membranes. Cranfield CG; Henriques ST; Martinac B; Duckworth P; Craik DJ; Cornell B Langmuir; 2017 Jul; 33(26):6630-6637. PubMed ID: 28605904 [TBL] [Abstract][Full Text] [Related]
6. Interaction of cyclotide Kalata B1 protein with model cellular membranes of varied electrostatics. Gupta R; Kumari J; Pati S; Singh S; Mishra M; Ghosh SK Int J Biol Macromol; 2021 Nov; 191():852-860. PubMed ID: 34592223 [TBL] [Abstract][Full Text] [Related]
7. In-Silico Template Selection of In-Vitro Evolved Kalata B1 of Oldenlandia Affinis for Scaffolding Peptide-Based Drug Design. Senthilkumar B; Kumar P; Rajasekaran R J Cell Biochem; 2016 Jan; 117(1):66-73. PubMed ID: 26052694 [TBL] [Abstract][Full Text] [Related]
8. Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. Henriques ST; Huang YH; Rosengren KJ; Franquelim HG; Carvalho FA; Johnson A; Sonza S; Tachedjian G; Castanho MA; Daly NL; Craik DJ J Biol Chem; 2011 Jul; 286(27):24231-41. PubMed ID: 21576247 [TBL] [Abstract][Full Text] [Related]
9. Differential Interaction of Antimicrobial Peptides with Lipid Structures Studied by Coarse-Grained Molecular Dynamics Simulations. Balatti GE; Ambroggio EE; Fidelio GD; Martini MF; Pickholz M Molecules; 2017 Oct; 22(10):. PubMed ID: 29053635 [TBL] [Abstract][Full Text] [Related]
10. Design, synthesis, structural and functional characterization of novel melanocortin agonists based on the cyclotide kalata B1. Eliasen R; Daly NL; Wulff BS; Andresen TL; Conde-Frieboes KW; Craik DJ J Biol Chem; 2012 Nov; 287(48):40493-501. PubMed ID: 23012369 [TBL] [Abstract][Full Text] [Related]
11. Simulating the antimicrobial mechanism of human β-defensin-3 with coarse-grained molecular dynamics. Zhao X; Yu H; Yang L; Li Q; Huang X J Biomol Struct Dyn; 2015; 33(11):2522-9. PubMed ID: 25562440 [TBL] [Abstract][Full Text] [Related]
12. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. Balatti GE; Martini MF; Pickholz M J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106 [TBL] [Abstract][Full Text] [Related]
13. Selective membrane disruption by the cyclotide kalata B7: complex ions and essential functional groups in the phosphatidylethanolamine binding pocket. Strömstedt AA; Kristiansen PE; Gunasekera S; Grob N; Skjeldal L; Göransson U Biochim Biophys Acta; 2016 Jun; 1858(6):1317-27. PubMed ID: 26878982 [TBL] [Abstract][Full Text] [Related]
14. Membrane pore formation in atomistic and coarse-grained simulations. Kirsch SA; Böckmann RA Biochim Biophys Acta; 2016 Oct; 1858(10):2266-2277. PubMed ID: 26748016 [TBL] [Abstract][Full Text] [Related]
15. Anthelminthic activity of the cyclotides (kalata B1 and B2) against schistosome parasites. Malagón D; Botterill B; Gray DJ; Lovas E; Duke M; Gray C; Kopp SR; Knott LM; McManus DP; Daly NL; Mulvenna J; Craik DJ; Jones MK Biopolymers; 2013 Sep; 100(5):461-70. PubMed ID: 23468118 [TBL] [Abstract][Full Text] [Related]
16. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity. Hu Y; Liu X; Sinha SK; Patel S J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488 [TBL] [Abstract][Full Text] [Related]
17. Inclusion of lateral pressure/curvature stress effects in implicit membrane models. Zhan H; Lazaridis T Biophys J; 2013 Feb; 104(3):643-54. PubMed ID: 23442915 [TBL] [Abstract][Full Text] [Related]
18. Curvature effect and stabilize ruptured membrane of BAX derived peptide studied by molecular dynamics simulations. Jiang Z; Zhang H J Mol Graph Model; 2019 May; 88():152-159. PubMed ID: 30703689 [TBL] [Abstract][Full Text] [Related]
19. Mesoscopic simulation of phospholipid membranes, peptides, and proteins with molecular fragment dynamics. Truszkowski A; van den Broek K; Kuhn H; Zielesny A; Epple M J Chem Inf Model; 2015 May; 55(5):983-97. PubMed ID: 25902200 [TBL] [Abstract][Full Text] [Related]
20. Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions. Wang CK; Wacklin HP; Craik DJ J Biol Chem; 2012 Dec; 287(52):43884-98. PubMed ID: 23129773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]