These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
635 related articles for article (PubMed ID: 24492758)
1. Corneal power change is predictive of myopia progression in orthokeratology. Zhong Y; Chen Z; Xue F; Zhou J; Niu L; Zhou X Optom Vis Sci; 2014 Apr; 91(4):404-11. PubMed ID: 24492758 [TBL] [Abstract][Full Text] [Related]
2. Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology. Hu Y; Wen C; Li Z; Zhao W; Ding X; Yang X Br J Ophthalmol; 2019 Nov; 103(11):1571-1575. PubMed ID: 30705043 [TBL] [Abstract][Full Text] [Related]
3. Central and Peripheral Corneal Power Change in Myopic Orthokeratology and Its Relationship With 2-Year Axial Length Change. Zhong Y; Chen Z; Xue F; Miao H; Zhou X Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4514-9. PubMed ID: 26200489 [TBL] [Abstract][Full Text] [Related]
4. The effects of entrance pupil centration and coma aberrations on myopic progression following orthokeratology. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Suzaki A Clin Exp Optom; 2015 Nov; 98(6):534-40. PubMed ID: 26283026 [TBL] [Abstract][Full Text] [Related]
5. Time course of the effects of orthokeratology on peripheral refraction and corneal topography. Kang P; Swarbrick H Ophthalmic Physiol Opt; 2013 May; 33(3):277-82. PubMed ID: 23347397 [TBL] [Abstract][Full Text] [Related]
6. Short-Term and Long-Term Changes in Corneal Power Are Not Correlated With Axial Elongation of the Eye Induced by Orthokeratology in Children. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R Eye Contact Lens; 2018 Jul; 44(4):260-267. PubMed ID: 27763910 [TBL] [Abstract][Full Text] [Related]
7. Changes in the Objective Vision Quality of Adolescents in a Mesopic Visual Environment After Wearing Orthokeratology Lenses: A Prospective Study. Cheng Z; Meng J; Ye L; Wang X; Gong Y; Liu X Eye Contact Lens; 2024 Sep; 50(9):384-394. PubMed ID: 38968599 [TBL] [Abstract][Full Text] [Related]
8. [Correlation between the increase in corneal higher-order aberrations and the control of children's myopic anisometropia after wearing orthokeratology lenses]. Sun XX; Zhang Y; Chen YG Zhonghua Yan Ke Za Zhi; 2022 Apr; 58(4):250-258. PubMed ID: 35391511 [No Abstract] [Full Text] [Related]
9. Regional Summed Corneal Refractive Power Changes in Myopic Orthokeratology and Their Relationships With Axial Elongation. Zhang H; Li H; Zou Z; Yang J; Zhou S Eye Contact Lens; 2024 Oct; 50(10):432-438. PubMed ID: 39186641 [TBL] [Abstract][Full Text] [Related]
10. Long-term Efficacy of Orthokeratology Contact Lens Wear in Controlling the Progression of Childhood Myopia. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Sugimoto K Curr Eye Res; 2017 May; 42(5):713-720. PubMed ID: 27767354 [TBL] [Abstract][Full Text] [Related]
11. Impact of pupil diameter on axial growth in orthokeratology. Chen Z; Niu L; Xue F; Qu X; Zhou Z; Zhou X; Chu R Optom Vis Sci; 2012 Nov; 89(11):1636-40. PubMed ID: 23026791 [TBL] [Abstract][Full Text] [Related]
12. The Effect of Relative Corneal Refractive Power Shift Distribution on Axial Length Growth in Myopic Children Undergoing Orthokeratology Treatment. Yang X; Bi H; Li L; Li S; Chen S; Zhang B; Wang Y Curr Eye Res; 2021 May; 46(5):657-665. PubMed ID: 32945207 [TBL] [Abstract][Full Text] [Related]
13. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results. Kinoshita N; Konno Y; Hamada N; Kanda Y; Shimmura-Tomita M; Kakehashi A Jpn J Ophthalmol; 2018 Sep; 62(5):544-553. PubMed ID: 29974278 [TBL] [Abstract][Full Text] [Related]
14. The effect of orthokeratology on axial length elongation in children with myopia: Contralateral comparison study. Na M; Yoo A Jpn J Ophthalmol; 2018 May; 62(3):327-334. PubMed ID: 29524061 [TBL] [Abstract][Full Text] [Related]
15. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):5060-5. PubMed ID: 22729437 [TBL] [Abstract][Full Text] [Related]
16. Myopia control during orthokeratology lens wear in children using a novel study design. Swarbrick HA; Alharbi A; Watt K; Lum E; Kang P Ophthalmology; 2015 Mar; 122(3):620-30. PubMed ID: 25439432 [TBL] [Abstract][Full Text] [Related]
17. Can manipulation of orthokeratology lens parameters modify peripheral refraction? Kang P; Gifford P; Swarbrick H Optom Vis Sci; 2013 Nov; 90(11):1237-48. PubMed ID: 24076541 [TBL] [Abstract][Full Text] [Related]
18. Higher spherical equivalent refractive errors is associated with slower axial elongation wearing orthokeratology. Fu AC; Chen XL; Lv Y; Wang SL; Shang LN; Li XH; Zhu Y Cont Lens Anterior Eye; 2016 Feb; 39(1):62-6. PubMed ID: 26254302 [TBL] [Abstract][Full Text] [Related]
19. Short-term changes in ocular biometry and refraction after discontinuation of long-term orthokeratology. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R Eye Contact Lens; 2014 Mar; 40(2):84-90. PubMed ID: 24508773 [TBL] [Abstract][Full Text] [Related]