These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 24492795)
21. Bayesian inference for stochastic kinetic models using a diffusion approximation. Golightly A; Wilkinson DJ Biometrics; 2005 Sep; 61(3):781-8. PubMed ID: 16135029 [TBL] [Abstract][Full Text] [Related]
22. A Bayesian approach to parameter estimation in HIV dynamical models. Putter H; Heisterkamp SH; Lange JM; de Wolf F Stat Med; 2002 Aug; 21(15):2199-214. PubMed ID: 12210633 [TBL] [Abstract][Full Text] [Related]
23. Bayesian restoration of ion channel records using hidden Markov models. Rosales R; Stark JA; Fitzgerald WJ; Hladky SB Biophys J; 2001 Mar; 80(3):1088-103. PubMed ID: 11222275 [TBL] [Abstract][Full Text] [Related]
24. Efficient parameter estimation for models of healthcare-associated pathogen transmission in discrete and continuous time. Thomas A; Redd A; Khader K; Leecaster M; Greene T; Samore M Math Med Biol; 2015 Mar; 32(1):79-98. PubMed ID: 24114068 [TBL] [Abstract][Full Text] [Related]
25. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants. Park ES; Symanski E; Han D; Spiegelman C Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239 [TBL] [Abstract][Full Text] [Related]
28. Bayesian Model Selection Framework to Improve Calibration of Continuous Glucose Monitoring Sensors for Diabetes Management. Acciaroli G; Vettoretti M; Facchinetti A; And Sparacino G Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():29-32. PubMed ID: 30440333 [TBL] [Abstract][Full Text] [Related]
29. Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model. Jensen AC; Ditlevsen S; Kessler M; Papaspiliopoulos O Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041114. PubMed ID: 23214536 [TBL] [Abstract][Full Text] [Related]
30. Mixed graphical models for simultaneous model identification and control applied to the glucose-insulin metabolism. Bleckert G; Oppel UG; Salzsieder E Comput Methods Programs Biomed; 1998 May; 56(2):141-55. PubMed ID: 9700429 [TBL] [Abstract][Full Text] [Related]
31. Bayesian structural equation modeling: a more flexible representation of substantive theory. Muthén B; Asparouhov T Psychol Methods; 2012 Sep; 17(3):313-35. PubMed ID: 22962886 [TBL] [Abstract][Full Text] [Related]
32. Bayesian hierarchical joint modeling of repeatedly measured continuous and ordinal markers of disease severity: Application to Ugandan diabetes data. Buhule OD; Wahed AS; Youk AO Stat Med; 2017 Dec; 36(29):4677-4691. PubMed ID: 28833382 [TBL] [Abstract][Full Text] [Related]
33. A gradient Markov chain Monte Carlo algorithm for computing multivariate maximum likelihood estimates and posterior distributions: mixture dose-response assessment. Li R; Englehardt JD; Li X Risk Anal; 2012 Feb; 32(2):345-59. PubMed ID: 21906114 [TBL] [Abstract][Full Text] [Related]
34. Reducing Monte Carlo error in the Bayesian estimation of risk ratios using log-binomial regression models. Salmerón D; Cano JA; Chirlaque MD Stat Med; 2015 Aug; 34(19):2755-67. PubMed ID: 25944082 [TBL] [Abstract][Full Text] [Related]
35. Spatial correlation in Bayesian logistic regression with misclassification. Bihrmann K; Toft N; Nielsen SS; Ersbøll AK Spat Spatiotemporal Epidemiol; 2014 Jun; 9():1-12. PubMed ID: 24889989 [TBL] [Abstract][Full Text] [Related]
36. Examining Type 1 Diabetes Mathematical Models Using Experimental Data. Al Ali H; Daneshkhah A; Boutayeb A; Mukandavire Z Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055576 [TBL] [Abstract][Full Text] [Related]
37. Gaussian Process modelling of blood glucose response to free-living physical activity data in people with type 1 diabetes. Valletta JJ; Chipperfield AJ; Byrne CD Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4913-6. PubMed ID: 19963637 [TBL] [Abstract][Full Text] [Related]
38. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo. Schmidt PJ; Pintar KD; Fazil AM; Topp E Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599 [TBL] [Abstract][Full Text] [Related]
39. Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes. Fernandez de Canete J; Gonzalez-Perez S; Ramos-Diaz JC Comput Methods Programs Biomed; 2012 Apr; 106(1):55-66. PubMed ID: 22178070 [TBL] [Abstract][Full Text] [Related]
40. Minimal model S(I)=0 problem in NIDDM subjects: nonzero Bayesian estimates with credible confidence intervals. Pillonetto G; Sparacino G; Magni P; Bellazzi R; Cobelli C Am J Physiol Endocrinol Metab; 2002 Mar; 282(3):E564-73. PubMed ID: 11832358 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]