These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2449286)

  • 1. Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis.
    Van Vactor D; Krantz DE; Reinke R; Zipursky SL
    Cell; 1988 Jan; 52(2):281-90. PubMed ID: 2449286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaoptin, a cell surface glycoprotein required for Drosophila photoreceptor cell morphogenesis, contains a repeat motif found in yeast and human.
    Reinke R; Krantz DE; Yen D; Zipursky SL
    Cell; 1988 Jan; 52(2):291-301. PubMed ID: 3124963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular localization of transcripts in Drosophila photoreceptor neurons: chaoptic mutants have an aberrant distribution.
    Pollock JA; Ellisman MH; Benzer S
    Genes Dev; 1990 May; 4(5):806-21. PubMed ID: 2143163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila chaoptin, a member of the leucine-rich repeat family, is a photoreceptor cell-specific adhesion molecule.
    Krantz DE; Zipursky SL
    EMBO J; 1990 Jun; 9(6):1969-77. PubMed ID: 2189727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of photoreceptor-specific phospholipase C encoded by the norpA gene of Drosophila melanogaster.
    Schneuwly S; Burg MG; Lending C; Perdew MH; Pak WL
    J Biol Chem; 1991 Dec; 266(36):24314-9. PubMed ID: 1662208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From monoclonal antibody to gene for a neuron-specific glycoprotein in Drosophila.
    Zipursky SL; Venkatesh TR; Benzer S
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1855-9. PubMed ID: 3920657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sevenless+ protein is expressed apically in cell membranes of developing Drosophila retina; it is not restricted to cell R7.
    Banerjee U; Renfranz PJ; Hinton DR; Rabin BA; Benzer S
    Cell; 1987 Oct; 51(1):151-8. PubMed ID: 3115594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WASp is required for the correct temporal morphogenesis of rhabdomere microvilli.
    Zelhof AC; Hardy RW
    J Cell Biol; 2004 Feb; 164(3):417-26. PubMed ID: 14744998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-fracture study of the Drosophila photoreceptor membrane: mutations affecting membrane particle density.
    Schinz RH; Lo MV; Larrivee DC; Pak WL
    J Cell Biol; 1982 Jun; 93(3):961-7. PubMed ID: 6811602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drosophila GPI-mannosyltransferase 2 is required for GPI anchor attachment and surface expression of chaoptin.
    Rosenbaum EE; Brehm KS; Vasiljevic E; Gajeski A; Colley NJ
    Vis Neurosci; 2012 May; 29(3):143-56. PubMed ID: 22575127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of the compound eye and first optic neuropile of the photoreceptor mutant oraJK84 of Drosophila.
    Stark WS; Carlson SD
    Cell Tissue Res; 1983; 233(2):305-17. PubMed ID: 6413070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head.
    Montell C; Rubin GM
    Cell; 1988 Mar; 52(5):757-72. PubMed ID: 2449973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syndapin constricts microvillar necks to form a united rhabdomere in
    Ogi S; Matsuda A; Otsuka Y; Liu Z; Satoh T; Satoh AK
    Development; 2019 Aug; 146(16):. PubMed ID: 31371377
    [No Abstract]   [Full Text] [Related]  

  • 14. Actin filaments and photoreceptor membrane turnover.
    Williams DS
    Bioessays; 1991 Apr; 13(4):171-8. PubMed ID: 1859395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes.
    Zipursky SL; Venkatesh TR; Teplow DB; Benzer S
    Cell; 1984 Jan; 36(1):15-26. PubMed ID: 6420071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serial electron microscopic reconstruction of the drosophila larval eye: Photoreceptors with a rudimentary rhabdomere of microvillar-like processes.
    Hartenstein V; Yuan M; Younossi-Hartenstein A; Karandikar A; Bernardo-Garcia FJ; Sprecher S; Knust E
    Dev Biol; 2019 Sep; 453(1):56-67. PubMed ID: 31158364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-Glycosylation of the Drosophila neural protein Chaoptin is essential for its stability, cell surface transport and adhesive activity.
    Hirai-Fujita Y; Yamamoto-Hino M; Kanie O; Goto S
    FEBS Lett; 2008 Jul; 582(17):2572-6. PubMed ID: 18588887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of photoreceptor membrane turnover in a Drosophila visual mutant, rdgA, by electron microscope autoradiography.
    Suzuki E; Hirosawa K; Hotta Y
    J Electron Microsc (Tokyo); 1990; 39(1):50-3. PubMed ID: 2358773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene encoding cytoskeletal proteins in Drosophila rhabdomeres.
    Matsumoto H; Isono K; Pye Q; Pak WL
    Proc Natl Acad Sci U S A; 1987 Feb; 84(4):985-9. PubMed ID: 3103129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors.
    Arikawa K; Hicks JL; Williams DS
    J Cell Biol; 1990 Jun; 110(6):1993-8. PubMed ID: 2112548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.