These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24492860)

  • 1. Quantum-enhanced absorption refrigerators.
    Correa LA; Palao JP; Alonso D; Adesso G
    Sci Rep; 2014 Feb; 4():3949. PubMed ID: 24492860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R; Levy A
    Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators.
    Liu J; Segal D
    Phys Rev E; 2021 Mar; 103(3-1):032138. PubMed ID: 33862758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unifying paradigms of quantum refrigeration: Fundamental limits of cooling and associated work costs.
    Clivaz F; Silva R; Haack G; Brask JB; Brunner N; Huber M
    Phys Rev E; 2019 Oct; 100(4-1):042130. PubMed ID: 31770926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooling condition for multilevel quantum absorption refrigerators.
    Friedman HM; Segal D
    Phys Rev E; 2019 Dec; 100(6-1):062112. PubMed ID: 31962400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current fluctuations in quantum absorption refrigerators.
    Segal D
    Phys Rev E; 2018 May; 97(5-1):052145. PubMed ID: 29906995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherence and decoherence in quantum absorption refrigerators.
    Kilgour M; Segal D
    Phys Rev E; 2018 Jul; 98(1-1):012117. PubMed ID: 30110858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental limits for cooling of linear quantum refrigerators.
    Freitas N; Paz JP
    Phys Rev E; 2017 Jan; 95(1-1):012146. PubMed ID: 28208454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal bounds on cooling power and cooling efficiency for autonomous absorption refrigerators.
    Mohanta S; Saryal S; Agarwalla BK
    Phys Rev E; 2022 Mar; 105(3-1):034127. PubMed ID: 35428079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal performance of endoreversible quantum refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062124. PubMed ID: 25615061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classical emulation of quantum-coherent thermal machines.
    González JO; Palao JP; Alonso D; Correa LA
    Phys Rev E; 2019 Jun; 99(6-1):062102. PubMed ID: 31330638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The thermodynamic cost of driving quantum systems by their boundaries.
    Barra F
    Sci Rep; 2015 Oct; 5():14873. PubMed ID: 26445899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal Bounds on Fluctuations in Continuous Thermal Machines.
    Saryal S; Gerry M; Khait I; Segal D; Agarwalla BK
    Phys Rev Lett; 2021 Nov; 127(19):190603. PubMed ID: 34797144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong system-bath coupling effects in quantum absorption refrigerators.
    Ivander F; Anto-Sztrikacs N; Segal D
    Phys Rev E; 2022 Mar; 105(3-1):034112. PubMed ID: 35428056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance bound for quantum absorption refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042131. PubMed ID: 23679395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum thermodynamic cooling cycle.
    Palao JP; Kosloff R; Gordon JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056130. PubMed ID: 11736037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Few-qubit quantum refrigerator for cooling a multi-qubit system.
    Arısoy O; Müstecaplıoğlu ÖE
    Sci Rep; 2021 Jun; 11(1):12981. PubMed ID: 34155244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum coherence, many-body correlations, and non-thermal effects for autonomous thermal machines.
    Latune CL; Sinayskiy I; Petruccione F
    Sci Rep; 2019 Feb; 9(1):3191. PubMed ID: 30816164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unifying Paradigms of Quantum Refrigeration: A Universal and Attainable Bound on Cooling.
    Clivaz F; Silva R; Haack G; Brask JB; Brunner N; Huber M
    Phys Rev Lett; 2019 Oct; 123(17):170605. PubMed ID: 31702237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.