These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 24492885)
1. Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis. Schütte K; Meyer H; Gemel C; Barthel J; Fischer RA; Janiak C Nanoscale; 2014 Mar; 6(6):3116-26. PubMed ID: 24492885 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of Metal Nanoparticles and Metal Fluoride Nanoparticles from Metal Amidinate Precursors in 1-Butyl-3-Methylimidazolium Ionic Liquids and Propylene Carbonate. Schütte K; Barthel J; Endres M; Siebels M; Smarsly BM; Yue J; Janiak C ChemistryOpen; 2017 Feb; 6(1):137-148. PubMed ID: 28168159 [TBL] [Abstract][Full Text] [Related]
3. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process. Karlsson HL; Cronholm P; Hedberg Y; Tornberg M; De Battice L; Svedhem S; Wallinder IO Toxicology; 2013 Nov; 313(1):59-69. PubMed ID: 23891735 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate. Siebels M; Mai L; Schmolke L; Schütte K; Barthel J; Yue J; Thomas J; Smarsly BM; Devi A; Fischer RA; Janiak C Beilstein J Nanotechnol; 2018; 9():1881-1894. PubMed ID: 30013882 [TBL] [Abstract][Full Text] [Related]
5. Facilitated CO2 transport membranes utilizing positively polarized copper nanoparticles. Lee JH; Hong J; Kim JH; Kang YS; Kang SW Chem Commun (Camb); 2012 May; 48(43):5298-300. PubMed ID: 22473474 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. Kang Y; Pyo JB; Ye X; Gordon TR; Murray CB ACS Nano; 2012 Jun; 6(6):5642-7. PubMed ID: 22559911 [TBL] [Abstract][Full Text] [Related]
7. Organic carbonates as stabilizing solvents for transition-metal nanoparticles. Vollmer C; Thomann R; Janiak C Dalton Trans; 2012 Aug; 41(32):9722-7. PubMed ID: 22786622 [TBL] [Abstract][Full Text] [Related]
8. Using hydrophilic ionic liquid, [bmim]BF4-ethylene glycol system as a novel media for the rapid synthesis of copper nanoparticles. Dewan M; Kumar A; Saxena A; De A; Mozumdar S PLoS One; 2012; 7(1):e29131. PubMed ID: 22238589 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Zhang H; Cui H Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685 [TBL] [Abstract][Full Text] [Related]
10. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts. Conrad F; Massue C; Kühl S; Kunkes E; Girgsdies F; Kasatkin I; Zhang B; Friedrich M; Luo Y; Armbrüster M; Patzke GR; Behrens M Nanoscale; 2012 Mar; 4(6):2018-28. PubMed ID: 22327266 [TBL] [Abstract][Full Text] [Related]
11. Immobilizing Polyether Imidazole Ionic Liquids on ZSM-5 Zeolite for the Catalytic Synthesis of Propylene Carbonate from Carbon Dioxide. Guo L; Jin X; Wang X; Yin L; Wang Y; Yang YW Molecules; 2018 Oct; 23(10):. PubMed ID: 30347858 [TBL] [Abstract][Full Text] [Related]
12. A colloidal ZnO/Cu nanocatalyst for methanol synthesis. Schröter MK; Khodeir L; van den Berg MW; Hikov T; Cokoja M; Miao S; Grünert W; Muhler M; Fischer RA Chem Commun (Camb); 2006 Jun; (23):2498-500. PubMed ID: 16758028 [TBL] [Abstract][Full Text] [Related]
14. Effect of ionic liquid impurities on the synthesis of silver nanoparticles. Lazarus LL; Riche CT; Malmstadt N; Brutchey RL Langmuir; 2012 Nov; 28(45):15987-93. PubMed ID: 23092200 [TBL] [Abstract][Full Text] [Related]
15. Galvanic replacement mediated transformation of Ag nanospheres into dendritic Au-Ag nanostructures in the ionic liquid [BMIM][BF4]. Pearson A; O'Mullane AP; Bansal V; Bhargava SK Chem Commun (Camb); 2010 Feb; 46(5):731-3. PubMed ID: 20087502 [TBL] [Abstract][Full Text] [Related]
16. Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene. Vollmer C; Redel E; Abu-Shandi K; Thomann R; Manyar H; Hardacre C; Janiak C Chemistry; 2010 Mar; 16(12):3849-58. PubMed ID: 20187043 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of silver and gold nanoparticles in ionic liquid. Singh P; Kumari K; Katyal A; Kalra R; Chandra R Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):218-20. PubMed ID: 19272833 [TBL] [Abstract][Full Text] [Related]
18. Colloidal nickel/gallium nanoalloys obtained from organometallic precursors in conventional organic solvents and in ionic liquids: noble-metal-free alkyne semihydrogenation catalysts. Schütte K; Doddi A; Kroll C; Meyer H; Wiktor C; Gemel C; van Tendeloo G; Fischer RA; Janiak C Nanoscale; 2014 May; 6(10):5532-44. PubMed ID: 24733576 [TBL] [Abstract][Full Text] [Related]
19. Stability of sputter-deposited gold nanoparticles in imidazolium ionic liquids. Vanecht E; Binnemans K; Patskovsky S; Meunier M; Seo JW; Stappers L; Fransaer J Phys Chem Chem Phys; 2012 Apr; 14(16):5662-71. PubMed ID: 22422275 [TBL] [Abstract][Full Text] [Related]
20. A rapid and simple route for the synthesis of lead and palladium nanoparticles in tetrazolium based ionic liquid. Singh P; Kumar P; Kumari K; Sharma P; Mozumdar S; Chandra R Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):909-12. PubMed ID: 21176885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]