These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24492950)

  • 41. Physiological pulsatile flow culture conditions to generate functional endothelium on a sulfated silk fibroin nanofibrous scaffold.
    Gong X; Liu H; Ding X; Liu M; Li X; Zheng L; Jia X; Zhou G; Zou Y; Li J; Huang X; Fan Y
    Biomaterials; 2014 Jun; 35(17):4782-91. PubMed ID: 24642194
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling of flow-induced shear stress applied on 3D cellular scaffolds: Implications for vascular tissue engineering.
    Lesman A; Blinder Y; Levenberg S
    Biotechnol Bioeng; 2010 Feb; 105(3):645-54. PubMed ID: 19787638
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering.
    Zhang ZY; Teoh SH; Teo EY; Khoon Chong MS; Shin CW; Tien FT; Choolani MA; Chan JK
    Biomaterials; 2010 Nov; 31(33):8684-95. PubMed ID: 20739062
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical optimization of cell colonization modelling inside scaffold for perfusion bioreactor: A multiscale model.
    Nguyen TK; Carpentier O; Monchau F; Chai F; Hornez JC; Hivart P
    Med Eng Phys; 2018 Jul; 57():40-50. PubMed ID: 29753628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deformation behavior of porous PHBV scaffold in compression: A finite element analysis study.
    Patel R; Lu M; Diermann SH; Wu A; Pettit A; Huang H
    J Mech Behav Biomed Mater; 2019 Aug; 96():1-8. PubMed ID: 31015108
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor.
    McCoy RJ; Jungreuthmayer C; O'Brien FJ
    Biotechnol Bioeng; 2012 Jun; 109(6):1583-94. PubMed ID: 22249971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. µ-Particle tracking velocimetry and computational fluid dynamics study of cell seeding within a 3D porous scaffold.
    Marin AC; Grossi T; Bianchi E; Dubini G; Lacroix D
    J Mech Behav Biomed Mater; 2017 Nov; 75():463-469. PubMed ID: 28823900
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds.
    Qi XN; Mou ZL; Zhang J; Zhang ZQ
    J Biomed Mater Res A; 2014 Feb; 102(2):366-72. PubMed ID: 23533149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering.
    Smits AI; Driessen-Mol A; Bouten CV; Baaijens FP
    Tissue Eng Part C Methods; 2012 Jun; 18(6):475-85. PubMed ID: 22224590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds.
    Van Bael S; Chai YC; Truscello S; Moesen M; Kerckhofs G; Van Oosterwyck H; Kruth JP; Schrooten J
    Acta Biomater; 2012 Jul; 8(7):2824-34. PubMed ID: 22487930
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In silico multi-scale model of transport and dynamic seeding in a bone tissue engineering perfusion bioreactor.
    Spencer TJ; Hidalgo-Bastida LA; Cartmell SH; Halliday I; Care CM
    Biotechnol Bioeng; 2013 Apr; 110(4):1221-30. PubMed ID: 23124479
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Channeling Effect and Tissue Morphology in a Perfusion Bioreactor Imaged by X-Ray Microtomography.
    Beauchesne CC; Chabanon M; Smaniotto B; Ladoux B; Goyeau B; David B
    Tissue Eng Regen Med; 2020 Jun; 17(3):301-311. PubMed ID: 32314312
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow.
    Stops AJ; Heraty KB; Browne M; O'Brien FJ; McHugh PE
    J Biomech; 2010 Mar; 43(4):618-26. PubMed ID: 19939388
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors.
    Boschetti F; Raimondi MT; Migliavacca F; Dubini G
    J Biomech; 2006; 39(3):418-25. PubMed ID: 16389082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A multi-shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs.
    Rotenberg MY; Ruvinov E; Armoza A; Cohen S
    Lab Chip; 2012 Aug; 12(15):2696-703. PubMed ID: 22622237
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting the stress distribution within scaffolds with ordered architecture.
    Pham NH; Voronov RS; Vangordon SB; Sikavitsas VI; Papavassiliou DV
    Biorheology; 2012; 49(4):235-47. PubMed ID: 22836078
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold.
    Mun CH; Jung Y; Kim SH; Kim HC; Kim SH
    Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A collagen network phase improves cell seeding of open-pore structure scaffolds under perfusion.
    Papadimitropoulos A; Riboldi SA; Tonnarelli B; Piccinini E; Woodruff MA; Hutmacher DW; Martin I
    J Tissue Eng Regen Med; 2013 Mar; 7(3):183-91. PubMed ID: 22095721
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mathematical modelling of fibre-enhanced perfusion inside a tissue-engineering bioreactor.
    Whittaker RJ; Booth R; Dyson R; Bailey C; Parsons Chini L; Naire S; Payvandi S; Rong Z; Woollard H; Cummings LJ; Waters SL; Mawasse L; Chaudhuri JB; Ellis MJ; Michael V; Kuiper NJ; Cartmell S
    J Theor Biol; 2009 Feb; 256(4):533-46. PubMed ID: 19014952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.