These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24492950)

  • 61. Preparation and characterization of Antheraea assama silk fibroin based novel non-woven scaffold for tissue engineering applications.
    Kasoju N; Bhonde RR; Bora U
    J Tissue Eng Regen Med; 2009 Oct; 3(7):539-52. PubMed ID: 19670334
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Chondrogenesis in perfusion bioreactors using porous silk scaffolds and hESC-derived MSCs.
    Tiğli RS; Cannizaro C; Gümüşderelioğlu M; Kaplan DL
    J Biomed Mater Res A; 2011 Jan; 96(1):21-8. PubMed ID: 20949478
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Three-dimensional flow perfusion culture enhances proliferation of human fetal osteoblasts in large scaffold with controlled architecture].
    Wang L; Ma ZS; Li DC; Lei W; Hu YY; Wang Z; Li X; Zhang Y; Pei GX
    Zhonghua Yi Xue Za Zhi; 2013 Jul; 93(25):1970-4. PubMed ID: 24169246
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Applying shear stress to endothelial cells in a new perfusion chamber: hydrodynamic analysis.
    Anisi F; Salehi-Nik N; Amoabediny G; Pouran B; Haghighipour N; Zandieh-Doulabi B
    J Artif Organs; 2014 Dec; 17(4):329-36. PubMed ID: 25213200
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cell proliferation and migration in silk fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 May; 30(15):2956-65. PubMed ID: 19249094
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Perfusion applied to a 3D model of bone metastasis results in uniformly dispersed mechanical stimuli.
    Liu B; Han S; Hedrick BP; Modarres-Sadeghi Y; Lynch ME
    Biotechnol Bioeng; 2018 Apr; 115(4):1076-1085. PubMed ID: 29278411
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Finite element study of scaffold architecture design and culture conditions for tissue engineering.
    Olivares AL; Marsal E; Planell JA; Lacroix D
    Biomaterials; 2009 Oct; 30(30):6142-9. PubMed ID: 19674779
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multiphase modelling of the influence of fluid flow and chemical concentration on tissue growth in a hollow fibre membrane bioreactor.
    Pearson NC; Shipley RJ; Waters SL; Oliver JM
    Math Med Biol; 2014 Dec; 31(4):393-430. PubMed ID: 24036069
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modeling the fluid-dynamics and oxygen consumption in a porous scaffold stimulated by cyclic squeeze pressure.
    Ferroni M; Giusti S; Nascimento D; Silva A; Boschetti F; Ahluwalia A
    Med Eng Phys; 2016 Aug; 38(8):725-32. PubMed ID: 27189671
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computational Framework to Evaluate the Hydrodynamics of Cell Scaffold Geometries.
    Puleri DF; Roychowdhury S; Ames J; Randles A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2299-2302. PubMed ID: 33018467
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Squeeze pressure bioreactor: a hydrodynamic bioreactor for noncontact stimulation of cartilage constructs.
    De Maria C; Giusti S; Mazzei D; Crawford A; Ahluwalia A
    Tissue Eng Part C Methods; 2011 Jul; 17(7):757-64. PubMed ID: 21410315
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A multiphysics/multiscale 2D numerical simulation of scaffold-based cartilage regeneration under interstitial perfusion in a bioreactor.
    Sacco R; Causin P; Zunino P; Raimondi MT
    Biomech Model Mechanobiol; 2011 Jul; 10(4):577-89. PubMed ID: 20865436
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Property studies on three-dimensional porous blended silk scaffolds].
    Rao J; Shen J; Quan D; Xu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct; 23(10):1264-70. PubMed ID: 19957853
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7.
    Zhang Y; Fan W; Ma Z; Wu C; Fang W; Liu G; Xiao Y
    Acta Biomater; 2010 Aug; 6(8):3021-8. PubMed ID: 20188872
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chondrogenesis using mesenchymal stem cells and PCL scaffolds.
    Kim HJ; Lee JH; Im GI
    J Biomed Mater Res A; 2010 Feb; 92(2):659-66. PubMed ID: 19235210
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Initial cell pre-cultivation can maximize ECM mineralization by human mesenchymal stem cells on silk fibroin scaffolds.
    Thimm BW; Wüst S; Hofmann S; Hagenmüller H; Müller R
    Acta Biomater; 2011 May; 7(5):2218-28. PubMed ID: 21300186
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Development of rotating perfusion bioreactor system and application for bone tissue engineering].
    Li X; Li D; Wang L; Wang Z; Lu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):66-70. PubMed ID: 17333894
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures.
    Liu Y; Li X; Qu X; Zhu L; He J; Zhao Q; Wu W; Li D
    Biofabrication; 2012 Mar; 4(1):015004. PubMed ID: 22258090
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Three-Dimensional Modelling inside a Differential Pressure Laminar Flow Bioreactor Filled with Porous Media.
    Weyand B; Israelowitz M; Kramer J; Bodmer C; Noehre M; Strauss S; Schmälzlin E; Gille C; von Schroeder HP; Reimers K; Vogt PM
    Biomed Res Int; 2015; 2015():320280. PubMed ID: 26301245
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Design optimization of scaffold microstructures using wall shear stress criterion towards regulated flow-induced erosion.
    Chen Y; Schellekens M; Zhou S; Cadman J; Li W; Appleyard R; Li Q
    J Biomech Eng; 2011 Aug; 133(8):081008. PubMed ID: 21950901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.