BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 24492954)

  • 1. A mathematical model of oxidative deamination of amino acid catalyzed by two D-amino acid oxidases and influence of aeration on enzyme stability.
    Findrik Z; Valentović I; Vasić-Rački Ð
    Appl Biochem Biotechnol; 2014 Mar; 172(6):3092-105. PubMed ID: 24492954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of D-methionine into L-methionine in the cascade of four enzymes.
    Findrik Z; Vasić-Racki D
    Biotechnol Bioeng; 2007 Dec; 98(5):956-67. PubMed ID: 17534960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Characterization of D-amino acid oxidase and its mutants from Arthrobacter protophormiae].
    Feng L; Guo J; Li H; Xu S; Ju J; Zhao B
    Wei Sheng Wu Xue Bao; 2014 Aug; 54(8):897-904. PubMed ID: 25345021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic properties of D-amino acid oxidase in cephalosporin C bioconversion: a comparison between proteins from different sources.
    Pollegioni L; Caldinelli L; Molla G; Sacchi S; Pilone MS
    Biotechnol Prog; 2004; 20(2):467-73. PubMed ID: 15058991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overproduction and characterization of a recombinant D-amino acid oxidase from Arthrobacter protophormiae.
    Geueke B; Weckbecker A; Hummel W
    Appl Microbiol Biotechnol; 2007 Apr; 74(6):1240-7. PubMed ID: 17279391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical model of the MenD-catalyzed 1,4-addition (Stetter reaction) of α-ketoglutaric acid to acrylonitrile.
    Sudar M; Vasić-Rački Đ; Müller M; Walter A; Blažević ZF
    J Biotechnol; 2018 Feb; 268():71-80. PubMed ID: 29405997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles molecular dynamics investigation of the D-amino acid oxidative half-reaction catalyzed by the flavoenzyme D-amino acid oxidase.
    Tilocca A; Gamba A; Vanoni MA; Fois E
    Biochemistry; 2002 Dec; 41(48):14111-21. PubMed ID: 12450374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New biotech applications from evolved D-amino acid oxidases.
    Pollegioni L; Molla G
    Trends Biotechnol; 2011 Jun; 29(6):276-83. PubMed ID: 21397351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermostabilization of porcine kidney D-amino acid oxidase by a single amino acid substitution.
    Bakke M; Setoyama C; Miura R; Kajiyama N
    Biotechnol Bioeng; 2006 Apr; 93(5):1023-7. PubMed ID: 16245349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the role of active site residues of Rhodotorula gracilis D-amino acid oxidase on its substrate specificity.
    Boselli A; Piubelli L; Molla G; Pilone MS; Pollegioni L; Sacchi S
    Biochimie; 2007 Mar; 89(3):360-8. PubMed ID: 17145127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the kinetic mechanism of pig kidney D-amino acid oxidase by site-directed mutagenesis of tyrosine 224 and tyrosine 228.
    Pollegioni L; Fukui K; Massey V
    J Biol Chem; 1994 Dec; 269(50):31666-73. PubMed ID: 7989339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and characterization of D-phenylserine deaminase from Arthrobacter sp. TKS1.
    Muramatsu H; Suzuki Y; Imai T; Ueshima S; Ozaki J; Matsui Y; Kato S; Ohnishi K; Kimoto N; Yamamoto H; Nagata S
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):159-72. PubMed ID: 21190106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial d-amino acid oxidases: Recent findings and future perspectives.
    Takahashi S; Abe K; Kera Y
    Bioengineered; 2015; 6(4):237-41. PubMed ID: 25996186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and stabilization of D-amino acid oxidase from the yeast Trigonopsis variabilis.
    Nidetzky B
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1588-92. PubMed ID: 18031272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assays of D-amino acid oxidases.
    Tedeschi G; Pollegioni L; Negri A
    Methods Mol Biol; 2012; 794():381-95. PubMed ID: 21956578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site plasticity in D-amino acid oxidase: a crystallographic analysis.
    Todone F; Vanoni MA; Mozzarelli A; Bolognesi M; Coda A; Curti B; Mattevi A
    Biochemistry; 1997 May; 36(19):5853-60. PubMed ID: 9153426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the reaction of D-amino acid oxidase with -chloro-D-alanine.
    Miyake Y; Abe T; Yamano T
    J Biochem; 1973 Jan; 73(1):1-11. PubMed ID: 4144086
    [No Abstract]   [Full Text] [Related]  

  • 19. On the reaction of D-amino acid oxidase with dioxygen: O2 diffusion pathways and enhancement of reactivity.
    Rosini E; Molla G; Ghisla S; Pollegioni L
    FEBS J; 2011 Feb; 278(3):482-92. PubMed ID: 21182588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective modification of surface-exposed thiol groups in Trigonopsis variabilis D-amino acid oxidase using poly(ethylene glycol) maleimide and its effect on activity and stability of the enzyme.
    Slavica A; Dib I; Nidetzky B
    Biotechnol Bioeng; 2007 Jan; 96(1):9-17. PubMed ID: 16948164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.