These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24493033)

  • 1. The cleverSuite approach for protein characterization: predictions of structural properties, solubility, chaperone requirements and RNA-binding abilities.
    Klus P; Bolognesi B; Agostini F; Marchese D; Zanzoni A; Tartaglia GG
    Bioinformatics; 2014 Jun; 30(11):1601-8. PubMed ID: 24493033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disordered RNA-Binding Region Prediction with DisoRDPbind.
    Oldfield CJ; Peng Z; Kurgan L
    Methods Mol Biol; 2020; 2106():225-239. PubMed ID: 31889261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein aggregation, structural disorder and RNA-binding ability: a new approach for physico-chemical and gene ontology classification of multiple datasets.
    Klus P; Ponti RD; Livi CM; Tartaglia GG
    BMC Genomics; 2015 Dec; 16():1071. PubMed ID: 26673865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt-Dependent Modulation of the RNA Chaperone Activity of RNA-Binding Protein La.
    Sommer G; Sendlmeier C; Heise T
    Methods Mol Biol; 2020; 2106():121-136. PubMed ID: 31889254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SODA: prediction of protein solubility from disorder and aggregation propensity.
    Paladin L; Piovesan D; Tosatto SCE
    Nucleic Acids Res; 2017 Jul; 45(W1):W236-W240. PubMed ID: 28505312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions.
    Agostini F; Zanzoni A; Klus P; Marchese D; Cirillo D; Tartaglia GG
    Bioinformatics; 2013 Nov; 29(22):2928-30. PubMed ID: 23975767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On predicting foldability of a protein from its sequence.
    Mezei M
    Proteins; 2020 Feb; 88(2):355-365. PubMed ID: 31479556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. omiXcore: a web server for prediction of protein interactions with large RNA.
    Armaos A; Cirillo D; Gaetano Tartaglia G
    Bioinformatics; 2017 Oct; 33(19):3104-3106. PubMed ID: 28637296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backbone ¹H, ¹³C and ¹⁵N assignments of yeast Ump1, an intrinsically disordered protein that functions as a proteasome assembly chaperone.
    Uekusa Y; Okawa K; Yagi-Utsumi M; Serve O; Nakagawa Y; Mizushima T; Yagi H; Saeki Y; Tanaka K; Kato K
    Biomol NMR Assign; 2014 Oct; 8(2):383-6. PubMed ID: 24065419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein function annotation from sequence: prediction of residues interacting with RNA.
    Spriggs RV; Murakami Y; Nakamura H; Jones S
    Bioinformatics; 2009 Jun; 25(12):1492-7. PubMed ID: 19389733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disorder Atlas: Web-based software for the proteome-based interpretation of intrinsic disorder predictions.
    Vincent M; Schnell S
    Comput Biol Chem; 2019 Dec; 83():107090. PubMed ID: 31326853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ccSOL omics: a webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli.
    Agostini F; Cirillo D; Livi CM; Delli Ponti R; Tartaglia GG
    Bioinformatics; 2014 Oct; 30(20):2975-7. PubMed ID: 24990610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PASTA 2.0: an improved server for protein aggregation prediction.
    Walsh I; Seno F; Tosatto SC; Trovato A
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W301-7. PubMed ID: 24848016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling RNA annealing and strand displacement: a FRET-based microplate reader assay for RNA chaperone activity.
    Rajkowitsch L; Schroeder R
    Biotechniques; 2007 Sep; 43(3):304, 306, 308 passim. PubMed ID: 17907573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Secondary Structure Propensities in IDPs Using Simple Statistics from Three-Residue Fragments.
    Estaña A; Barozet A; Mouhand A; Vaisset M; Zanon C; Fauret P; Sibille N; Bernadó P; Cortés J
    J Mol Biol; 2020 Sep; 432(19):5447-5459. PubMed ID: 32771522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural features important for the RNA chaperone activity of zinc finger-containing glycine-rich RNA-binding proteins from wheat (Triticum avestivum) and rice (Oryza sativa).
    Xu T; Han JH; Kang H
    Phytochemistry; 2013 Oct; 94():28-35. PubMed ID: 23787154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RBRIdent: An algorithm for improved identification of RNA-binding residues in proteins from primary sequences.
    Xiong D; Zeng J; Gong H
    Proteins; 2015 Jun; 83(6):1068-77. PubMed ID: 25846271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HYPROSP II--a knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence.
    Lin HN; Chang JM; Wu KP; Sung TY; Hsu WL
    Bioinformatics; 2005 Aug; 21(15):3227-33. PubMed ID: 15932901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. catRAPID omics v2.0: going deeper and wider in the prediction of protein-RNA interactions.
    Armaos A; Colantoni A; Proietti G; Rupert J; Tartaglia GG
    Nucleic Acids Res; 2021 Jul; 49(W1):W72-W79. PubMed ID: 34086933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.