These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24493033)

  • 21. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae.
    Ivanyi-Nagy R; Lavergne JP; Gabus C; Ficheux D; Darlix JL
    Nucleic Acids Res; 2008 Feb; 36(3):712-25. PubMed ID: 18033802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PaRSnIP: sequence-based protein solubility prediction using gradient boosting machine.
    Rawi R; Mall R; Kunji K; Shen CH; Kwong PD; Chuang GY
    Bioinformatics; 2018 Apr; 34(7):1092-1098. PubMed ID: 29069295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical Methods for the Study of the FinO Family of Bacterial RNA Chaperones.
    Kim HJ; Chaulk S; Arthur D; Edwards RA; Glover JNM
    Methods Mol Biol; 2020; 2106():1-18. PubMed ID: 31889248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. catRAPID signature: identification of ribonucleoproteins and RNA-binding regions.
    Livi CM; Klus P; Delli Ponti R; Tartaglia GG
    Bioinformatics; 2016 Mar; 32(5):773-5. PubMed ID: 26520853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naïve Bayes.
    Lou W; Wang X; Chen F; Chen Y; Jiang B; Zhang H
    PLoS One; 2014; 9(1):e86703. PubMed ID: 24475169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of clustered RNA-binding protein motif sites in the mammalian genome.
    Zhang C; Lee KY; Swanson MS; Darnell RB
    Nucleic Acids Res; 2013 Aug; 41(14):6793-807. PubMed ID: 23685613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder.
    Peng Z; Kurgan L
    Nucleic Acids Res; 2015 Oct; 43(18):e121. PubMed ID: 26109352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. flDPnn: Accurate intrinsic disorder prediction with putative propensities of disorder functions.
    Hu G; Katuwawala A; Wang K; Wu Z; Ghadermarzi S; Gao J; Kurgan L
    Nat Commun; 2021 Jul; 12(1):4438. PubMed ID: 34290238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process.
    Kwak KJ; Park SJ; Han JH; Kim MK; Oh SH; Han YS; Kang H
    J Exp Bot; 2011 Jul; 62(11):4003-11. PubMed ID: 21511907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The RNA chaperone and protein chaperone activity of Arabidopsis glycine-rich RNA-binding protein 4 and 7 is determined by the propensity for the formation of high molecular weight complexes.
    Han JH; Jung YJ; Lee HJ; Jung HS; Lee KO; Kang H
    Protein J; 2013 Aug; 32(6):449-55. PubMed ID: 23912241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J; Ozenne V; Blackledge M; Jensen MR
    Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrinsically disordered proteins display no preference for chaperone binding in vivo.
    Hegyi H; Tompa P
    PLoS Comput Biol; 2008 Mar; 4(3):e1000017. PubMed ID: 18369417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.
    Wang Z; Yang Q; Li T; Cong P
    PLoS One; 2015; 10(6):e0128334. PubMed ID: 26090958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence-based prediction of protein interaction sites with an integrative method.
    Chen XW; Jeong JC
    Bioinformatics; 2009 Mar; 25(5):585-91. PubMed ID: 19153136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissecting the oligonucleotide binding properties of a disordered chaperone protein using surface plasmon resonance.
    Baltzinger M; Sharma KK; Mély Y; Altschuh D
    Nucleic Acids Res; 2013 Dec; 41(22):10414-25. PubMed ID: 24030713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature.
    Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X
    Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.