BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 24493375)

  • 1. Postnatal development of the skull of Dinilysia patagonica (Squamata-stem Serpentes).
    Scanferla A; Bhullar BA
    Anat Rec (Hoboken); 2014 Mar; 297(3):560-73. PubMed ID: 24493375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The upper cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and the crista circumfenestralis of snakes.
    Palci A; Caldwell MW
    J Morphol; 2014 Oct; 275(10):1187-200. PubMed ID: 24898898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics.
    Palci A; Lee MS; Hutchinson MN
    J Anat; 2016 Dec; 229(6):723-754. PubMed ID: 27329823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal heterochrony is associated with the anatomical specializations of snakes among squamate reptiles.
    Werneburg I; Sánchez-Villagra MR
    Evolution; 2015 Jan; 69(1):254-63. PubMed ID: 25355076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new fossil from the Jurassic of Patagonia reveals the early basicranial evolution and the origins of Crocodyliformes.
    Pol D; Rauhut OW; Lecuona A; Leardi JM; Xu X; Clark JM
    Biol Rev Camb Philos Soc; 2013 Nov; 88(4):862-72. PubMed ID: 23445256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cranial ontogeny of
    Strong CRC; Simões TR; Caldwell MW; Doschak MR
    R Soc Open Sci; 2019 Aug; 6(8):182228. PubMed ID: 31598225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.
    Hsiang AY; Field DJ; Webster TH; Behlke AD; Davis MB; Racicot RA; Gauthier JA
    BMC Evol Biol; 2015 May; 15():87. PubMed ID: 25989795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Braincase anatomy of extant Crocodylia, with new insights into the development and evolution of the neurocranium in crocodylomorphs.
    Kuzmin IT; Boitsova EA; Gombolevskiy VA; Mazur EV; Morozov SP; Sennikov AG; Skutschas PP; Sues HD
    J Anat; 2021 Nov; 239(5):983-1038. PubMed ID: 34176132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First Natural Endocranial Cast of a Fossil Snake (Cretaceous of Patagonia, Argentina).
    Triviño LN; Albino AM; Dozo MT; Williams JD
    Anat Rec (Hoboken); 2018 Jan; 301(1):9-20. PubMed ID: 28921909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene.
    Scanlon JD
    Nature; 2006 Feb; 439(7078):839-42. PubMed ID: 16482156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phylogenetic approach to ontogeny and heterochrony in the fossil record: cranial evolution and development in anguimorphan lizards (Reptilia: Squamata).
    Bhullar BA
    J Exp Zool B Mol Dev Evol; 2012 Nov; 318(7):521-30. PubMed ID: 23081909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into skull evolution in fossorial snakes, as revealed by the cranial morphology of Atractaspis irregularis (Serpentes: Colubroidea).
    Strong CRC; Palci A; Caldwell MW
    J Anat; 2021 Jan; 238(1):146-172. PubMed ID: 32815172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of the axial skeleton intercentrum system in snakes revealed by new data from the Cretaceous snakes Dinilysia and Najash.
    Garberoglio FF; Gómez RO; Simões TR; Caldwell MW; Apesteguía S
    Sci Rep; 2019 Feb; 9(1):1276. PubMed ID: 30718525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eocene lizard from Germany reveals amphisbaenian origins.
    Müller J; Hipsley CA; Head JJ; Kardjilov N; Hilger A; Wuttke M; Reisz RR
    Nature; 2011 May; 473(7347):364-7. PubMed ID: 21593869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic development of skull bones in the Sahara horned viper (Cerastes cerastes), with new insights into structures related to the basicranium and braincase roof.
    Khannoon ER; Ollonen J; Di-Poï N
    J Anat; 2020 Jul; 237(1):1-19. PubMed ID: 32242931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecomorphological diversification in squamates from conserved pattern of cranial integration.
    Watanabe A; Fabre AC; Felice RN; Maisano JA; Müller J; Herrel A; Goswami A
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14688-14697. PubMed ID: 31262818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transitional snake from the Late Cretaceous period of North America.
    Longrich NR; Bhullar BA; Gauthier JA
    Nature; 2012 Aug; 488(7410):205-8. PubMed ID: 22832579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.
    Martill DM; Tischlinger H; Longrich NR
    Science; 2015 Jul; 349(6246):416-9. PubMed ID: 26206932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of the South American fossil squamates.
    Albino AM; Brizuela S
    Anat Rec (Hoboken); 2014 Mar; 297(3):349-68. PubMed ID: 24482358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The morphology of the inner ear of squamate reptiles and its bearing on the origin of snakes.
    Palci A; Hutchinson MN; Caldwell MW; Lee MSY
    R Soc Open Sci; 2017 Aug; 4(8):170685. PubMed ID: 28879011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.