BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24493379)

  • 1. Grid cell spatial tuning reduced following systemic muscarinic receptor blockade.
    Newman EL; Climer JR; Hasselmo ME
    Hippocampus; 2014 Jun; 24(6):643-55. PubMed ID: 24493379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise spike timing dynamics of hippocampal place cell activity sensitive to cholinergic disruption.
    Newman EL; Venditto SJC; Climer JR; Petter EA; Gillet SN; Levy S
    Hippocampus; 2017 Oct; 27(10):1069-1082. PubMed ID: 28628945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinergic blockade reduces theta-gamma phase amplitude coupling and speed modulation of theta frequency consistent with behavioral effects on encoding.
    Newman EL; Gillet SN; Climer JR; Hasselmo ME
    J Neurosci; 2013 Dec; 33(50):19635-46. PubMed ID: 24336727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning.
    Brandon MP; Bogaard AR; Libby CP; Connerney MA; Gupta K; Hasselmo ME
    Science; 2011 Apr; 332(6029):595-9. PubMed ID: 21527714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grid-like hexadirectional modulation of human entorhinal theta oscillations.
    Maidenbaum S; Miller J; Stein JM; Jacobs J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10798-10803. PubMed ID: 30282738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How reduction of theta rhythm by medial septum inactivation may covary with disruption of entorhinal grid cell responses due to reduced cholinergic transmission.
    Pilly PK; Grossberg S
    Front Neural Circuits; 2013; 7():173. PubMed ID: 24198762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Architecture of the Rat Parasubiculum.
    Tang Q; Burgalossi A; Ebbesen CL; Sanguinetti-Scheck JI; Schmidt H; Tukker JJ; Naumann R; Ray S; Preston-Ferrer P; Schmitz D; Brecht M
    J Neurosci; 2016 Feb; 36(7):2289-301. PubMed ID: 26888938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired path integration and grid cell spatial periodicity in mice lacking GluA1-containing AMPA receptors.
    Allen K; Gil M; Resnik E; Toader O; Seeburg P; Monyer H
    J Neurosci; 2014 Apr; 34(18):6245-59. PubMed ID: 24790195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex.
    Hasselmo ME
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120523. PubMed ID: 24366135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Head direction is coded more strongly than movement direction in a population of entorhinal neurons.
    Raudies F; Brandon MP; Chapman GW; Hasselmo ME
    Brain Res; 2015 Sep; 1621():355-67. PubMed ID: 25451111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
    Chen G; King JA; Lu Y; Cacucci F; Burgess N
    Elife; 2018 Jun; 7():. PubMed ID: 29911974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholinergic suppression of excitatory synaptic responses in layer II of the medial entorhinal cortex.
    Hamam BN; Sinai M; Poirier G; Chapman CA
    Hippocampus; 2007; 17(2):103-13. PubMed ID: 17146776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex.
    Heys JG; Giocomo LM; Hasselmo ME
    J Neurophysiol; 2010 Jul; 104(1):258-70. PubMed ID: 20445030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medial entorhinal grid cells and head direction cells rotate with a T-maze more often during less recently experienced rotations.
    Gupta K; Beer NJ; Keller LA; Hasselmo ME
    Cereb Cortex; 2014 Jun; 24(6):1630-44. PubMed ID: 23382518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex.
    Hardcastle K; Maheswaranathan N; Ganguli S; Giocomo LM
    Neuron; 2017 Apr; 94(2):375-387.e7. PubMed ID: 28392071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats.
    Jeewajee A; Barry C; O'Keefe J; Burgess N
    Hippocampus; 2008; 18(12):1175-85. PubMed ID: 19021251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonin-dependent maintenance of spatial performance and electroencephalography activation after cholinergic blockade: effects of serotonergic receptor antagonists.
    Dringenberg HC; Zalan RM
    Brain Res; 1999 Aug; 837(1-2):242-53. PubMed ID: 10434009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segregation of cortical head direction cell assemblies on alternating θ cycles.
    Brandon MP; Bogaard AR; Schultheiss NW; Hasselmo ME
    Nat Neurosci; 2013 Jun; 16(6):739-48. PubMed ID: 23603709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex.
    Brun VH; Solstad T; Kjelstrup KB; Fyhn M; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1200-12. PubMed ID: 19021257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cells.
    Blair HT; Gupta K; Zhang K
    Hippocampus; 2008; 18(12):1239-55. PubMed ID: 19021259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.