BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24493383)

  • 1. Evolution of the relaxin/insulin-like gene family in anthropoid primates.
    Arroyo JI; Hoffmann FG; Opazo JC
    Genome Biol Evol; 2014 Mar; 6(3):491-9. PubMed ID: 24493383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene turnover and differential retention in the relaxin/insulin-like gene family in primates.
    Arroyo JI; Hoffmann FG; Opazo JC
    Mol Phylogenet Evol; 2012 Jun; 63(3):768-76. PubMed ID: 22405815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the relaxin/insulin-like gene family in placental mammals: implications for its early evolution.
    Hoffmann FG; Opazo JC
    J Mol Evol; 2011 Jan; 72(1):72-9. PubMed ID: 21082170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INSL4 pseudogenes help define the relaxin family repertoire in the common ancestor of placental mammals.
    Arroyo JI; Hoffmann FG; Good S; Opazo JC
    J Mol Evol; 2012 Aug; 75(1-2):73-8. PubMed ID: 22961112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, and expression analysis.
    Good-Avila SV; Yegorov S; Harron S; Bogerd J; Glen P; Ozon J; Wilson BC
    BMC Evol Biol; 2009 Dec; 9():293. PubMed ID: 20015397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary analysis of the highly dynamic CHEK2 duplicon in anthropoids.
    Münch C; Kirsch S; Fernandes AM; Schempp W
    BMC Evol Biol; 2008 Oct; 8():269. PubMed ID: 18831734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel fusion transcript between human relaxin-1 (RLN1) and human relaxin-2 (RLN2) in prostate cancer.
    Tevz G; McGrath S; Demeter R; Magrini V; Jeet V; Rockstroh A; McPherson S; Lai J; Bartonicek N; An J; Batra J; Dinger ME; Lehman ML; Williams ED; Nelson CC
    Mol Cell Endocrinol; 2016 Jan; 420():159-68. PubMed ID: 26499396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progressive erosion of the Relaxin1 gene in bovids.
    Malone L; Opazo JC; Ryan PL; Hoffmann FG
    Gen Comp Endocrinol; 2017 Oct; 252():12-17. PubMed ID: 28733228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene duplication and positive selection explains unusual physiological roles of the relaxin gene in the European rabbit.
    Arroyo JI; Hoffmann FG; Opazo JC
    J Mol Evol; 2012 Feb; 74(1-2):52-60. PubMed ID: 22354201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ancient origin of placental expression in the growth hormone genes of anthropoid primates.
    Papper Z; Jameson NM; Romero R; Weckle AL; Mittal P; Benirschke K; Santolaya-Forgas J; Uddin M; Haig D; Goodman M; Wildman DE
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):17083-8. PubMed ID: 19805162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the relaxin-like peptide family.
    Wilkinson TN; Speed TP; Tregear GW; Bathgate RA
    BMC Evol Biol; 2005 Feb; 5():14. PubMed ID: 15707501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relaxin family peptide receptors and their ligands: new developments and paradigms in the evolution from jawless fish to mammals.
    Yegorov S; Bogerd J; Good SV
    Gen Comp Endocrinol; 2014 Dec; 209():93-105. PubMed ID: 25079565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors.
    Yegorov S; Good S
    PLoS One; 2012; 7(3):e32923. PubMed ID: 22470432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates.
    Schmidt TR; Wildman DE; Uddin M; Opazo JC; Goodman M; Grossman LI
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6379-84. PubMed ID: 15851671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection.
    Maston GA; Ruvolo M
    Mol Biol Evol; 2002 Mar; 19(3):320-35. PubMed ID: 11861891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duplication of the gamma-globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates.
    Fitch DH; Bailey WJ; Tagle DA; Goodman M; Sieu L; Slightom JL
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7396-400. PubMed ID: 1908094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three insulin-relaxin-like genes in Ciona intestinalis.
    Olinski RP; Dahlberg C; Thorndyke M; Hallböök F
    Peptides; 2006 Nov; 27(11):2535-46. PubMed ID: 16920224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterozygous deletion at the RLN1 locus in a family with testicular germ cell cancer identified by integrating copy number variation data with phenome and interactome information.
    Edsgärd D; Scheel M; Hansen NT; Ralfkiaer U; Jensen TS; Skakkebaek NE; Brunak S; Gupta R; Rajpert-De Meyts E; Ottesen AM
    Int J Androl; 2011 Aug; 34(4 Pt 2):e122-32. PubMed ID: 21696394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinctive patterns of evolution of the δ-globin gene (HBD) in primates.
    Moleirinho A; Lopes AM; Seixas S; Morales-Hojas R; Prata MJ; Amorim A
    PLoS One; 2015; 10(4):e0123365. PubMed ID: 25853817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.