BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 24494197)

  • 1. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.
    Dott W; Mistry P; Wright J; Cain K; Herbert KE
    Redox Biol; 2014; 2():224-33. PubMed ID: 24494197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants.
    Marroquin LD; Hynes J; Dykens JA; Jamieson JD; Will Y
    Toxicol Sci; 2007 Jun; 97(2):539-47. PubMed ID: 17361016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.
    Nisr RB; Affourtit C
    Biochim Biophys Acta; 2014 Feb; 1837(2):270-6. PubMed ID: 24212054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism.
    Plitzko B; Loesgen S
    Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle.
    Frisard MI; Wu Y; McMillan RP; Voelker KA; Wahlberg KA; Anderson AS; Boutagy N; Resendes K; Ravussin E; Hulver MW
    Metabolism; 2015 Mar; 64(3):416-27. PubMed ID: 25528444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low glucose but not galactose enhances oxidative mitochondrial metabolism in C2C12 myoblasts and myotubes.
    Elkalaf M; Anděl M; Trnka J
    PLoS One; 2013; 8(8):e70772. PubMed ID: 23940640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimycin A-induced mitochondrial dysfunction is consistent with impaired insulin signaling in cultured skeletal muscle cells.
    Mazibuko-Mbeje SE; Mthembu SXH; Dludla PV; Madoroba E; Chellan N; Kappo AP; Muller CJF
    Toxicol In Vitro; 2021 Oct; 76():105224. PubMed ID: 34302933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergetic characterization of mouse podocytes.
    Abe Y; Sakairi T; Kajiyama H; Shrivastav S; Beeson C; Kopp JB
    Am J Physiol Cell Physiol; 2010 Aug; 299(2):C464-76. PubMed ID: 20445170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bcl-x
    Pfeiffer A; Schneider J; Bueno D; Dolga A; Voss TD; Lewerenz J; Wüllner V; Methner A
    Free Radic Biol Med; 2017 Nov; 112():350-359. PubMed ID: 28807815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolytic reprogramming in macrophages and MSCs during inflammation.
    Li X; Shen H; Zhang M; Teissier V; Huang EE; Gao Q; Tsubosaka M; Toya M; Kushioka J; Maduka CV; Contag CH; Chow SK; Zhang N; Goodman SB
    Front Immunol; 2023; 14():1199751. PubMed ID: 37675119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of mitochondrial toxicity in HepG2 cells cultured in high-glucose- or galactose-containing media.
    Swiss R; Will Y
    Curr Protoc Toxicol; 2011 Aug; Chapter 2():Unit2.20. PubMed ID: 21818751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria.
    Doerrier C; Garcia-Souza LF; Krumschnabel G; Wohlfarter Y; Mészáros AT; Gnaiger E
    Methods Mol Biol; 2018; 1782():31-70. PubMed ID: 29850993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells.
    Aguer C; Gambarotta D; Mailloux RJ; Moffat C; Dent R; McPherson R; Harper ME
    PLoS One; 2011; 6(12):e28536. PubMed ID: 22194845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated metabolic models for xenobiotic induced mitochondrial toxicity in skeletal muscle.
    Dott W; Wright J; Cain K; Mistry P; Herbert KE
    Redox Biol; 2018 Apr; 14():198-210. PubMed ID: 28942197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress.
    Davuluri G; Allawy A; Thapaliya S; Rennison JH; Singh D; Kumar A; Sandlers Y; Van Wagoner DR; Flask CA; Hoppel C; Kasumov T; Dasarathy S
    J Physiol; 2016 Dec; 594(24):7341-7360. PubMed ID: 27558544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing oxidative phosphorylation over glycolysis for energy production in cultured mesenchymal stem cells.
    Monsour M; Gorsky A; Nguyen H; Castelli V; Lee JY; Borlongan CV
    Neuroreport; 2022 Oct; 33(15):635-640. PubMed ID: 36126260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of autophagy and glycolysis by nitric oxide during hypoxia-reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons.
    Benavides GA; Liang Q; Dodson M; Darley-Usmar V; Zhang J
    Free Radic Biol Med; 2013 Dec; 65():1215-1228. PubMed ID: 24056030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness.
    Smolina N; Bruton J; Kostareva A; Sejersen T
    Methods Mol Biol; 2017; 1601():79-87. PubMed ID: 28470519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short Communication: Beta-adrenergic agonists alter oxidative phosphorylation in primary myoblasts.
    Sieck RL; Treffer LK; Fuller AM; Ponte Viana M; Khalimonchuk O; Schmidt TB; Yates DT; Petersen JL
    J Anim Sci; 2022 Aug; 100(8):. PubMed ID: 35908785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.