These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24494719)

  • 1. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.
    Kagami H; Agata H; Inoue M; Asahina I; Tojo A; Yamashita N; Imai K
    Tissue Eng Part B Rev; 2014 Jun; 20(3):229-32. PubMed ID: 24494719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristic change and loss of in vivo osteogenic abilities of human bone marrow stromal cells during passage.
    Agata H; Asahina I; Watanabe N; Ishii Y; Kubo N; Ohshima S; Yamazaki M; Tojo A; Kagami H
    Tissue Eng Part A; 2010 Feb; 16(2):663-73. PubMed ID: 19754223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation.
    Kagami H; Agata H; Tojo A
    Int J Biochem Cell Biol; 2011 Mar; 43(3):286-9. PubMed ID: 21147252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo.
    Gong Y; Qian Y; Yang F; Wang H; Yu Y
    Eur J Oral Sci; 2014 Jun; 122(3):190-7. PubMed ID: 24666017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenic induction of bone marrow-derived stromal cells on simvastatin-releasing, biodegradable, nano- to microscale fiber scaffolds.
    Wadagaki R; Mizuno D; Yamawaki-Ogata A; Satake M; Kaneko H; Hagiwara S; Yamamoto N; Narita Y; Hibi H; Ueda M
    Ann Biomed Eng; 2011 Jul; 39(7):1872-81. PubMed ID: 21590488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo and in vitro study of osteogenic potency of endothelin-1 on bone marrow-derived mesenchymal stem cells.
    Hu LW; Wang X; Jiang XQ; Xu LQ; Pan HY
    Exp Cell Res; 2017 Aug; 357(1):25-32. PubMed ID: 28432001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study.
    Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y
    Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells.
    Guang LG; Boskey AL; Zhu W
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1813-20. PubMed ID: 23742988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia induces osteogenic/angiogenic responses of bone marrow-derived mesenchymal stromal cells seeded on bone-derived scaffolds via ERK1/2 and p38 pathways.
    Zhou Y; Guan X; Wang H; Zhu Z; Li C; Wu S; Yu H
    Biotechnol Bioeng; 2013 Jun; 110(6):1794-804. PubMed ID: 23296944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells.
    Kim KI; Park S; Im GI
    Biomaterials; 2014 Jun; 35(17):4792-804. PubMed ID: 24655782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.
    Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL
    Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled extracellular macromolecular matrices and their different osteogenic potential with preosteoblasts and rat bone marrow mesenchymal stromal cells.
    Bae SE; Bhang SH; Kim BS; Park K
    Biomacromolecules; 2012 Sep; 13(9):2811-20. PubMed ID: 22813212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of tissue-engineered bone from adipose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs.
    Pourebrahim N; Hashemibeni B; Shahnaseri S; Torabinia N; Mousavi B; Adibi S; Heidari F; Alavi MJ
    Int J Oral Maxillofac Surg; 2013 May; 42(5):562-8. PubMed ID: 23219713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells.
    Prins HJ; Braat AK; Gawlitta D; Dhert WJ; Egan DA; Tijssen-Slump E; Yuan H; Coffer PJ; Rozemuller H; Martens AC
    Stem Cell Res; 2014 Mar; 12(2):428-40. PubMed ID: 24384458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Donor Age and Cell Passage Affect Osteogenic Ability of Rat Bone Marrow Mesenchymal Stem Cells.
    Li C; Wei G; Gu Q; Wen G; Qi B; Xu L; Tao S
    Cell Biochem Biophys; 2015 Jun; 72(2):543-9. PubMed ID: 25634304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the use of adipose tissue-derived and bone marrow-derived stem cells for rapid bone regeneration.
    Zhang W; Zhang X; Wang S; Xu L; Zhang M; Wang G; Jin Y; Zhang X; Jiang X
    J Dent Res; 2013 Dec; 92(12):1136-41. PubMed ID: 24097853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different effects of nanophase and conventional hydroxyapatite thin films on attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells.
    Zhou GS; Su ZY; Cai YR; Liu YK; Dai LC; Tang RK; Zhang M
    Biomed Mater Eng; 2007; 17(6):387-95. PubMed ID: 18032820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of histone acetylation as a tool in bone tissue engineering.
    de Boer J; Licht R; Bongers M; van der Klundert T; Arends R; van Blitterswijk C
    Tissue Eng; 2006 Oct; 12(10):2927-37. PubMed ID: 17518660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tissue-like construct of human bone marrow MSCs composite scaffold support in vivo ectopic bone formation.
    Ben-David D; Kizhner T; Livne E; Srouji S
    J Tissue Eng Regen Med; 2010 Jan; 4(1):30-7. PubMed ID: 19842114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.