These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24494719)

  • 21. Evaluation of canine bone marrow-derived mesenchymal stem cells after long-term cryopreservation.
    Zhu X; Yuan F; Li H; Zheng Y; Xiao Y; Yan F
    Zoolog Sci; 2013 Dec; 30(12):1032-7. PubMed ID: 24320181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Dose-Effect Relationship Between the Seeding Quantity of Human Marrow Mesenchymal Stem Cells and In Vivo Tissue-Engineered Bone Yield.
    Wu H; Kang N; Wang Q; Dong P; Lv X; Cao Y; Xiao R
    Cell Transplant; 2015; 24(10):1957-68. PubMed ID: 25398079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repair of mandibular defects by bone marrow stromal cells expressing the basic fibroblast growth factor transgene combined with multi-pore mineralized Bio-Oss.
    Yang C; Liu Y; Li C; Zhang B
    Mol Med Rep; 2013 Jan; 7(1):99-104. PubMed ID: 23139139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells.
    Radtke CL; Nino-Fong R; Esparza Gonzalez BP; Stryhn H; McDuffee LA
    Am J Vet Res; 2013 May; 74(5):790-800. PubMed ID: 23627394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of bone marrow stem cells for bone tissue engineering.
    Ng MH; Aminuddin BS; Tan KK; Tan GH; Sabarul Afian M; Ruszymah BH
    Med J Malaysia; 2004 May; 59 Suppl B():41-2. PubMed ID: 15468809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells.
    Huang C; Ogawa R
    Tissue Eng Part A; 2012 Oct; 18(19-20):2106-13. PubMed ID: 22607391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering.
    Ciapetti G; Ambrosio L; Marletta G; Baldini N; Giunti A
    Biomaterials; 2006 Dec; 27(36):6150-60. PubMed ID: 16965811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Placenta- versus bone-marrow-derived mesenchymal cells for the repair of segmental bone defects in a rabbit model.
    Fan ZX; Lu Y; Deng L; Li XQ; Zhi W; Li-Ling J; Yang ZM; Xie HQ
    FEBS J; 2012 Jul; 279(13):2455-65. PubMed ID: 22564891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of bone marrow stromal cells in combination with biomaterials in early phases of distraction osteogenesis: An experimental study in a rabbit femur model.
    Montes-Medina L; Hernández-Fernández A; Gutiérrez-Rivera A; Ripalda-Cemboráin P; Bitarte N; Pérez-López V; Granero-Moltó F; Prosper F; Izeta A
    Injury; 2018 Nov; 49(11):1979-1986. PubMed ID: 30219381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits.
    Li G; Wang X; Cao J; Ju Z; Ma D; Liu Y; Zhang J
    Br J Oral Maxillofac Surg; 2014 Feb; 52(2):134-9. PubMed ID: 24210781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells.
    Both SK; van Apeldoorn AA; Jukes JM; Englund MC; Hyllner J; van Blitterswijk CA; de Boer J
    J Tissue Eng Regen Med; 2011 Mar; 5(3):180-90. PubMed ID: 20718035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteogenic activity of bone marrow-derived mesenchymal stem cells (BMSCs) seeded on irradiated allogenic bone.
    Tohma Y; Dohi Y; Ohgushi H; Tadokoro M; Akahane M; Tanaka Y
    J Tissue Eng Regen Med; 2012 Feb; 6(2):96-102. PubMed ID: 21322118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects.
    Choi JW; Park EJ; Shin HS; Shin IS; Ra JC; Koh KS
    Ann Plast Surg; 2014 Feb; 72(2):225-33. PubMed ID: 23221992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells.
    Herten M; Grassmann JP; Sager M; Benga L; Fischer JC; Jäger M; Betsch M; Wild M; Hakimi M; Jungbluth P
    Vet Comp Orthop Traumatol; 2013; 26(1):34-41. PubMed ID: 23171924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.
    Shimizu K; Ito A; Honda H
    J Biosci Bioeng; 2007 Sep; 104(3):171-7. PubMed ID: 17964479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells.
    van Gastel N; Torrekens S; Roberts SJ; Moermans K; Schrooten J; Carmeliet P; Luttun A; Luyten FP; Carmeliet G
    Stem Cells; 2012 Nov; 30(11):2460-71. PubMed ID: 22911908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold.
    Valarmathi MT; Yost MJ; Goodwin RL; Potts JD
    Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration.
    Dennis JE; Esterly K; Awadallah A; Parrish CR; Poynter GM; Goltry KL
    Stem Cells; 2007 Oct; 25(10):2575-82. PubMed ID: 17585167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fat option for the pig: hepatocytic differentiated mesenchymal stem cells for translational research.
    Brückner S; Tautenhahn HM; Winkler S; Stock P; Dollinger M; Christ B
    Exp Cell Res; 2014 Feb; 321(2):267-75. PubMed ID: 24200501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.