These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 24494981)
1. Direct and quinone-mediated palladium reduction by Geobacter sulfurreducens: mechanisms and modeling. Pat-Espadas AM; Razo-Flores E; Rangel-Mendez JR; Cervantes FJ Environ Sci Technol; 2014; 48(5):2910-9. PubMed ID: 24494981 [TBL] [Abstract][Full Text] [Related]
2. Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction. Tuo Y; Liu G; Zhou J; Wang A; Wang J; Jin R; Lv H Bioresour Technol; 2013 Apr; 133():606-11. PubMed ID: 23453979 [TBL] [Abstract][Full Text] [Related]
3. Reduction of palladium and production of nano-catalyst by Geobacter sulfurreducens. Pat-Espadas AM; Razo-Flores E; Rangel-Mendez JR; Cervantes FJ Appl Microbiol Biotechnol; 2013 Nov; 97(21):9553-60. PubMed ID: 23271671 [TBL] [Abstract][Full Text] [Related]
4. Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. Voordeckers JW; Kim BC; Izallalen M; Lovley DR Appl Environ Microbiol; 2010 Apr; 76(7):2371-5. PubMed ID: 20154112 [TBL] [Abstract][Full Text] [Related]
5. Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances. Dantas JM; Ferreira MR; Catarino T; Kokhan O; Pokkuluri PR; Salgueiro CA Biochim Biophys Acta Bioenerg; 2018 Aug; 1859(8):619-630. PubMed ID: 29777686 [TBL] [Abstract][Full Text] [Related]
6. Global transcriptional analysis of Geobacter sulfurreducens under palladium reducing conditions reveals new key cytochromes involved. Hernández-Eligio A; Pat-Espadas AM; Vega-Alvarado L; Huerta-Amparán M; Cervantes FJ; Juárez K Appl Microbiol Biotechnol; 2020 May; 104(9):4059-4069. PubMed ID: 32179949 [TBL] [Abstract][Full Text] [Related]
7. Biotransformation of 4-nitrophenol by co-immobilized Geobacter sulfurreducens and anthraquinone-2-sulfonate in barium alginate beads. Rodriguez SY; Cantú ME; Garcia-Reyes B; Garza-Gonzalez MT; Meza-Escalante ER; Serrano D; Alvarez LH Chemosphere; 2019 Apr; 221():219-225. PubMed ID: 30640004 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens. Esteve-Núñez A; Sosnik J; Visconti P; Lovley DR Environ Microbiol; 2008 Feb; 10(2):497-505. PubMed ID: 18093163 [TBL] [Abstract][Full Text] [Related]
9. Evidence for interaction between the triheme cytochrome PpcA from Geobacter sulfurreducens and anthrahydroquinone-2,6-disulfonate, an analog of the redox active components of humic substances. Dantas JM; Morgado L; Catarino T; Kokhan O; Pokkuluri PR; Salgueiro CA Biochim Biophys Acta; 2014 Jun; 1837(6):750-60. PubMed ID: 24530867 [TBL] [Abstract][Full Text] [Related]
10. Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite. Doong RA; Lee CC; Lien CM Chemosphere; 2014 Feb; 97():54-63. PubMed ID: 24290294 [TBL] [Abstract][Full Text] [Related]
11. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Mehta T; Coppi MV; Childers SE; Lovley DR Appl Environ Microbiol; 2005 Dec; 71(12):8634-41. PubMed ID: 16332857 [TBL] [Abstract][Full Text] [Related]
12. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Fernandes AP; Nunes TC; Paquete CM; Salgueiro CA Biochem J; 2017 Feb; 474(5):797-808. PubMed ID: 28093471 [No Abstract] [Full Text] [Related]
13. Biomineralization of Cu Kimber RL; Bagshaw H; Smith K; Buchanan DM; Coker VS; Cavet JS; Lloyd JR Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680873 [TBL] [Abstract][Full Text] [Related]
14. Importance of c-Type cytochromes for U(VI) reduction by Geobacter sulfurreducens. Shelobolina ES; Coppi MV; Korenevsky AA; DiDonato LN; Sullivan SA; Konishi H; Xu H; Leang C; Butler JE; Kim BC; Lovley DR BMC Microbiol; 2007 Mar; 7():16. PubMed ID: 17346345 [TBL] [Abstract][Full Text] [Related]
15. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles. Maithreepala RA; Doong RA J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic insights unveil the crucial roles of cytochromes, NADH, and pili in Ag(I) reduction by Geobacter sulfurreducens. Liu C; Guo D; Wen S; Dang Y; Sun D; Li P Chemosphere; 2024 Jun; 358():142174. PubMed ID: 38685325 [TBL] [Abstract][Full Text] [Related]
17. Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens. Yan B; Wrenn BA; Basak S; Biswas P; Giammar DE Environ Sci Technol; 2008 Sep; 42(17):6526-31. PubMed ID: 18800525 [TBL] [Abstract][Full Text] [Related]
18. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Mahadevan R; Bond DR; Butler JE; Esteve-Nuñez A; Coppi MV; Palsson BO; Schilling CH; Lovley DR Appl Environ Microbiol; 2006 Feb; 72(2):1558-68. PubMed ID: 16461711 [TBL] [Abstract][Full Text] [Related]
19. Microbial engineering of nanoheterostructures: biological synthesis of a magnetically recoverable palladium nanocatalyst. Coker VS; Bennett JA; Telling ND; Henkel T; Charnock JM; van der Laan G; Pattrick RA; Pearce CI; Cutting RS; Shannon IJ; Wood J; Arenholz E; Lyon IC; Lloyd JR ACS Nano; 2010 May; 4(5):2577-84. PubMed ID: 20394356 [TBL] [Abstract][Full Text] [Related]
20. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms. Tanzil AH; Sultana ST; Saunders SR; Dohnalkova AC; Shi L; Davenport E; Ha P; Beyenal H Enzyme Microb Technol; 2016 Dec; 95():69-75. PubMed ID: 27866628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]