BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24495005)

  • 1. Simple synthetic method toward solid supported c60 visible light-activated photocatalysts.
    Moor KJ; Kim JH
    Environ Sci Technol; 2014; 48(5):2785-91. PubMed ID: 24495005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Visible Light Photoactivity of Supported Fullerene Photocatalysts through the Use of [C₇₀] Fullerene.
    Moor KJ; Valle DC; Li C; Kim JH
    Environ Sci Technol; 2015 May; 49(10):6190-7. PubMed ID: 25950200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates.
    Moor KJ; Snow SD; Kim JH
    Environ Sci Technol; 2015 May; 49(10):5990-8. PubMed ID: 25950275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C60/Bi2TiO4F2 heterojunction photocatalysts with enhanced visible-light activity for environmental remediation.
    Li G; Jiang B; Li X; Lian Z; Xiao S; Zhu J; Zhang D; Li H
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7190-7. PubMed ID: 23834299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized fullerenes in water: a closer look.
    Snow SD; Kim KC; Moor KJ; Jang SS; Kim JH
    Environ Sci Technol; 2015 Feb; 49(4):2147-55. PubMed ID: 25632831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation.
    Zhu S; Xu T; Fu H; Zhao J; Zhu Y
    Environ Sci Technol; 2007 Sep; 41(17):6234-9. PubMed ID: 17937308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible light sensitized inactivation of MS-2 bacteriophage by a cationic amine-functionalized C60 derivative.
    Cho M; Lee J; Mackeyev Y; Wilson LJ; Alvarez PJ; Hughes JB; Kim JH
    Environ Sci Technol; 2010 Sep; 44(17):6685-91. PubMed ID: 20687548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C60 aminofullerene immobilized on silica as a visible-light-activated photocatalyst.
    Lee J; Mackeyev Y; Cho M; Wilson LJ; Kim JH; Alvarez PJ
    Environ Sci Technol; 2010 Dec; 44(24):9488-95. PubMed ID: 21077614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity studies of fullerenes and derivatives.
    Kolosnjaj J; Szwarc H; Moussa F
    Adv Exp Med Biol; 2007; 620():168-80. PubMed ID: 18217343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-light-mediated addition of α-aminoalkyl radicals to [60]fullerene by using photoredox catalysts.
    Miyake Y; Ashida Y; Nakajima K; Nishibayashi Y
    Chemistry; 2014 May; 20(20):6120-5. PubMed ID: 24700543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Overlooked Photochemistry of Iodine in Aqueous Suspensions of Fullerene Derivatives.
    Kamat M; Moor K; Langlois G; Chen M; Parker KM; McNeill K; Snow SD
    ACS Nano; 2022 May; 16(5):8309-8317. PubMed ID: 35533084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoaddition of N-substituted piperazines to C60: an efficient approach to the synthesis of water-soluble fullerene derivatives.
    Troshina OA; Troshin PA; Peregudov AS; Kozlovski VI; Lyubovskaya RN
    Chemistry; 2006 Jul; 12(21):5569-77. PubMed ID: 16755633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation.
    Chae SR; Watanabe Y; Wiesner MR
    Water Res; 2011 Jan; 45(1):308-14. PubMed ID: 20708771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible-light driven photodegradation on Ag nanoparticle-embedded fullerene (C
    Yi H; Liu R; Chen Z; Nie B
    Chemosphere; 2020 Nov; 258():127355. PubMed ID: 32554015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of Fullerene modified ZnAlTi-LDO in photo-degradation of Bisphenol A under simulated visible light irradiation.
    Ju L; Wu P; Lai X; Yang S; Gong B; Chen M; Zhu N
    Environ Pollut; 2017 Sep; 228():234-244. PubMed ID: 28549332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress on Fullerene-Based Materials: Synthesis, Properties, Modifications, and Photocatalytic Applications.
    Yao S; Yuan X; Jiang L; Xiong T; Zhang J
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32629789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of aggregated C60 in the aqueous phase by UV irradiation.
    Lee J; Cho M; Fortner JD; Hughes JB; Kim JH
    Environ Sci Technol; 2009 Jul; 43(13):4878-83. PubMed ID: 19673279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of C60-fullerene derivatives and pristine fullerenes in environmental samples by ultrahigh performance liquid chromatography-atmospheric pressure photoionization-mass spectrometry.
    Astefanei A; Núñez O; Galceran MT
    J Chromatogr A; 2014 Oct; 1365():61-71. PubMed ID: 25204268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Containers Derived from [60]Fullerene through Peroxide Chemistry.
    Gan L
    Acc Chem Res; 2019 Jul; 52(7):1793-1801. PubMed ID: 31243971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fullerene C60-silver nanoparticles hybrid structures: optical and photoelectric characterization.
    Dmitruk NL; Borkovskaya OY; Mamykin SV; Naumenko DO; Berezovska NI; Dmitruk IM; Meza-Laguna V; Alvarez-Zauco E; Basiuk EV
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5958-65. PubMed ID: 19198332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.