These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 24495074)

  • 1. Heterogeneous nucleation of ice on carbon surfaces.
    Lupi L; Hudait A; Molinero V
    J Am Chem Soc; 2014 Feb; 136(8):3156-64. PubMed ID: 24495074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does hydrophilicity of carbon particles improve their ice nucleation ability?
    Lupi L; Molinero V
    J Phys Chem A; 2014 Sep; 118(35):7330-7. PubMed ID: 24533525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols.
    Brooks SD; Suter K; Olivarez L
    J Phys Chem A; 2014 Oct; 118(43):10036-47. PubMed ID: 25280086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.
    Lupi L; Kastelowitz N; Molinero V
    J Chem Phys; 2014 Nov; 141(18):18C508. PubMed ID: 25399173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.
    Koehler KA; DeMott PJ; Kreidenweis SM; Popovicheva OB; Petters MD; Carrico CM; Kireeva ED; Khokhlova TD; Shonija NK
    Phys Chem Chem Phys; 2009 Sep; 11(36):7906-20. PubMed ID: 19727498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.
    Hudait A; Molinero V
    J Am Chem Soc; 2014 Jun; 136(22):8081-93. PubMed ID: 24820354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice nucleation by particles immersed in supercooled cloud droplets.
    Murray BJ; O'Sullivan D; Atkinson JD; Webb ME
    Chem Soc Rev; 2012 Oct; 41(19):6519-54. PubMed ID: 22932664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2014 Aug; 141(8):084501. PubMed ID: 25173015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore condensation and freezing is responsible for ice formation below water saturation for porous particles.
    David RO; Marcolli C; Fahrni J; Qiu Y; Perez Sirkin YA; Molinero V; Mahrt F; Brühwiler D; Lohmann U; Kanji ZA
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8184-8189. PubMed ID: 30948638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols.
    DeMott PJ; Mason RH; McCluskey CS; Hill TCJ; Perkins RJ; Desyaterik Y; Bertram AK; Trueblood JV; Grassian VH; Qiu Y; Molinero V; Tobo Y; Sultana CM; Lee C; Prather KA
    Environ Sci Process Impacts; 2018 Nov; 20(11):1559-1569. PubMed ID: 30382263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Molecular Mechanism of Ice Nucleation on Model AgI Surfaces.
    Zielke SA; Bertram AK; Patey GN
    J Phys Chem B; 2015 Jul; 119(29):9049-55. PubMed ID: 25255062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.
    Zobrist B; Marcolli C; Peter T; Koop T
    J Phys Chem A; 2008 May; 112(17):3965-75. PubMed ID: 18363389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.
    Qiu Y; Odendahl N; Hudait A; Mason R; Bertram AK; Paesani F; DeMott PJ; Molinero V
    J Am Chem Soc; 2017 Mar; 139(8):3052-3064. PubMed ID: 28135412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J
    ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of liquid clouds to homogenous freezing parameterizations.
    Herbert RJ; Murray BJ; Dobbie SJ; Koop T
    Geophys Res Lett; 2015 Mar; 42(5):1599-1605. PubMed ID: 26074652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity.
    Knopf DA; Forrester SM
    J Phys Chem A; 2011 Jun; 115(22):5579-91. PubMed ID: 21568271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers.
    Cox SJ; Kathmann SM; Slater B; Michaelides A
    J Chem Phys; 2015 May; 142(18):184705. PubMed ID: 25978903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.