These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 24495203)
1. Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes. Patil UM; Sohn JS; Kulkarni SB; Lee SC; Park HG; Gurav KV; Kim JH; Jun SC ACS Appl Mater Interfaces; 2014 Feb; 6(4):2450-8. PubMed ID: 24495203 [TBL] [Abstract][Full Text] [Related]
2. PolyHIPE Derived Freestanding 3D Carbon Foam for Cobalt Hydroxide Nanorods Based High Performance Supercapacitor. Patil UM; Ghorpade RV; Nam MS; Nalawade AC; Lee S; Han H; Jun SC Sci Rep; 2016 Oct; 6():35490. PubMed ID: 27762284 [TBL] [Abstract][Full Text] [Related]
3. Low cost facile synthesis of large-area cobalt hydroxide nanorods with remarkable pseudocapacitance. Deng MJ; Song CZ; Wang CC; Tseng YC; Chen JM; Lu KT ACS Appl Mater Interfaces; 2015 May; 7(17):9147-56. PubMed ID: 25874993 [TBL] [Abstract][Full Text] [Related]
4. Direct growth of cobalt hydroxide rods on nickel foam and its application for energy storage. Salunkhe RR; Bastakoti BP; Hsu CT; Suzuki N; Kim JH; Dou SX; Hu CC; Yamauchi Y Chemistry; 2014 Mar; 20(11):3084-8. PubMed ID: 24522895 [TBL] [Abstract][Full Text] [Related]
5. Preparation of Electrodes with β-Nickel Hydroxide/CVD-Graphene/3D-Nickel Foam Composite Structures to Enhance the Capacitance Characteristics of Supercapacitors. Lu YM; Hong SH Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203877 [TBL] [Abstract][Full Text] [Related]
6. Ultrathin β-Ni(OH)2 nanoplates vertically grown on nickel-coated carbon nanotubes as high-performance pseudocapacitor electrode materials. Ma X; Li Y; Wen Z; Gao F; Liang C; Che R ACS Appl Mater Interfaces; 2015 Jan; 7(1):974-9. PubMed ID: 25514200 [TBL] [Abstract][Full Text] [Related]
7. Facile in situ synthesis of hierarchical porous Ni/Ni(OH)₂ hybrid sponges with excellent electrochemical energy-storage performances for supercapacitors. Wang W; Wang W; Wang M; Guo X Chem Asian J; 2014 Sep; 9(9):2590-6. PubMed ID: 25048538 [TBL] [Abstract][Full Text] [Related]
8. A nickel hydroxide-coated 3D porous graphene hollow sphere framework as a high performance electrode material for supercapacitors. Zhang F; Zhu D; Chen X; Xu X; Yang Z; Zou C; Yang K; Huang S Phys Chem Chem Phys; 2014 Mar; 16(9):4186-92. PubMed ID: 24452101 [TBL] [Abstract][Full Text] [Related]
9. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. Yang Y; Li L; Ruan G; Fei H; Xiang C; Fan X; Tour JM ACS Nano; 2014 Sep; 8(9):9622-8. PubMed ID: 25198148 [TBL] [Abstract][Full Text] [Related]
10. Nanostructured (Co, Ni)-based compounds coated on a highly conductive three dimensional hollow carbon nanorod array (HCNA) scaffold for high performance pseudocapacitors. Wan L; Xiao J; Xiao F; Wang S ACS Appl Mater Interfaces; 2014 May; 6(10):7735-42. PubMed ID: 24755163 [TBL] [Abstract][Full Text] [Related]
11. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Wang H; Casalongue HS; Liang Y; Dai H J Am Chem Soc; 2010 Jun; 132(21):7472-7. PubMed ID: 20443559 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of supercapacitive performances of nickel cobalt layered double hydroxides coated on ZnO nanostructured arrays on textile fibre as electrodes for wearable energy storage devices. Trang NT; Ngoc HV; Lingappan N; Kang DJ Nanoscale; 2014 Feb; 6(4):2434-9. PubMed ID: 24441593 [TBL] [Abstract][Full Text] [Related]
13. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. Dong XC; Xu H; Wang XW; Huang YX; Chan-Park MB; Zhang H; Wang LH; Huang W; Chen P ACS Nano; 2012 Apr; 6(4):3206-13. PubMed ID: 22435881 [TBL] [Abstract][Full Text] [Related]
14. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Luan F; Wang G; Ling Y; Lu X; Wang H; Tong Y; Liu XX; Li Y Nanoscale; 2013 Sep; 5(17):7984-90. PubMed ID: 23864110 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of nickel-foam-supported layered zinc-cobalt hydroxide nanoflakes for high electrochemical performance in supercapacitors. Yuan P; Zhang N; Zhang D; Liu T; Chen L; Liu X; Ma R; Qiu G Chem Commun (Camb); 2014 Oct; 50(76):11188-91. PubMed ID: 25110896 [TBL] [Abstract][Full Text] [Related]
16. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Patil U; Lee SC; Kulkarni S; Sohn JS; Nam MS; Han S; Jun SC Nanoscale; 2015 Apr; 7(16):6999-7021. PubMed ID: 25807279 [TBL] [Abstract][Full Text] [Related]
17. Mineral-Templated 3D Graphene Architectures for Energy-Efficient Electrodes. Zhang M; Chen K; Wang C; Jian M; Yin Z; Liu Z; Hong G; Liu Z; Zhang Y Small; 2018 May; 14(22):e1801009. PubMed ID: 29717812 [TBL] [Abstract][Full Text] [Related]
18. Nanostructured cobalt hydroxide thin films as high performance pseudocapacitor electrodes by graphene oxide wrapping. Bae S; Cha JH; Lee JH; Jung DY Dalton Trans; 2015 Sep; 44(36):16119-26. PubMed ID: 26289720 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis of three dimensional hierarchical Co-Al layered double hydroxides on graphene as high-performance materials for supercapacitor electrode. Hao J; Yang W; Zhang Z; Lu B; Ke X; Zhang B; Tang J J Colloid Interface Sci; 2014 Jul; 426():131-6. PubMed ID: 24863775 [TBL] [Abstract][Full Text] [Related]
20. Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. Zhan B; Liu C; Chen H; Shi H; Wang L; Chen P; Huang W; Dong X Nanoscale; 2014 Jul; 6(13):7424-9. PubMed ID: 24879425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]