These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 24495215)
21. Toxicologic Pathology Forum Opinion Paper*: Recommendations for a Tiered Approach to Nonclinical Mechanistic Nephrotoxicity Evaluation. Ennulat D; Ringenberg M; Frazier KS Toxicol Pathol; 2018 Aug; 46(6):636-646. PubMed ID: 30049250 [TBL] [Abstract][Full Text] [Related]
22. Multiplexed assay panel of cytotoxicity in HK-2 cells for detection of renal proximal tubule injury potential of compounds. Wu Y; Connors D; Barber L; Jayachandra S; Hanumegowda UM; Adams SP Toxicol In Vitro; 2009 Sep; 23(6):1170-8. PubMed ID: 19523510 [TBL] [Abstract][Full Text] [Related]
23. The role of transport in chemical nephrotoxicity. Berndt WO Toxicol Pathol; 1998; 26(1):52-7. PubMed ID: 9502387 [TBL] [Abstract][Full Text] [Related]
24. Functional transepithelial transport measurements to detect nephrotoxicity in vitro using the RPTEC/TERT1 cell line. Secker PF; Schlichenmaier N; Beilmann M; Deschl U; Dietrich DR Arch Toxicol; 2019 Jul; 93(7):1965-1978. PubMed ID: 31076804 [TBL] [Abstract][Full Text] [Related]
25. Oxalate stimulates IL-6 production in HK-2 cells, a line of human renal proximal tubular epithelial cells. Huang MY; Chaturvedi LS; Koul S; Koul HK Kidney Int; 2005 Aug; 68(2):497-503. PubMed ID: 16014026 [TBL] [Abstract][Full Text] [Related]
26. Cytokine cooperation in renal tubular cell injury: the role of TWEAK. Justo P; Sanz AB; Sanchez-NiƱo MD; Winkles JA; Lorz C; Egido J; Ortiz A Kidney Int; 2006 Nov; 70(10):1750-8. PubMed ID: 17003819 [TBL] [Abstract][Full Text] [Related]
27. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Angelotti ML; Ronconi E; Ballerini L; Peired A; Mazzinghi B; Sagrinati C; Parente E; Gacci M; Carini M; Rotondi M; Fogo AB; Lazzeri E; Lasagni L; Romagnani P Stem Cells; 2012 Aug; 30(8):1714-25. PubMed ID: 22628275 [TBL] [Abstract][Full Text] [Related]
28. Freshly isolated primary human proximal tubule cells as an in vitro model for the detection of renal tubular toxicity. Bajaj P; Chung G; Pye K; Yukawa T; Imanishi A; Takai Y; Brown C; Wagoner MP Toxicology; 2020 Sep; 442():152535. PubMed ID: 32622972 [TBL] [Abstract][Full Text] [Related]
29. Interleukin-19 as a translational indicator of renal injury. Jennings P; Crean D; Aschauer L; Limonciel A; Moenks K; Kern G; Hewitt P; Lhotta K; Lukas A; Wilmes A; Leonard MO Arch Toxicol; 2015 Jan; 89(1):101-6. PubMed ID: 24714768 [TBL] [Abstract][Full Text] [Related]
32. [Pharmacokinetic interpretation of the nephrotoxic effect of aminoglycosides. Pharmacodynamic aspects of the nephrotoxic effect of aminoglycosides]. Gagaeva EV; Firsov AA; Fomina IP Antibiot Khimioter; 1989 Apr; 34(4):304-8. PubMed ID: 2665678 [No Abstract] [Full Text] [Related]
33. Molecular-targeted approaches to reduce renal accumulation of nephrotoxic drugs. Nagai J; Takano M Expert Opin Drug Metab Toxicol; 2010 Sep; 6(9):1125-38. PubMed ID: 20536274 [TBL] [Abstract][Full Text] [Related]
34. Solute carrier transporter and drug-related nephrotoxicity: the impact of proximal tubule cell models for preclinical research. Fisel P; Renner O; Nies AT; Schwab M; Schaeffeler E Expert Opin Drug Metab Toxicol; 2014 Mar; 10(3):395-408. PubMed ID: 24397389 [TBL] [Abstract][Full Text] [Related]
35. Assessment of osteopontin as an early nephrotoxicity indicator in human renal proximal tubule cells and its application in evaluating lanthanum-induced nephrotoxicity. Chen Y; Xu F; Xiao X; Chi H; Lai Y; Lin X; Li Q; Song J; Wu W; Li Z; Yang X Ecotoxicol Environ Saf; 2024 Feb; 271():115928. PubMed ID: 38215666 [TBL] [Abstract][Full Text] [Related]
36. Adefovir nephrotoxicity: possible role of mitochondrial DNA depletion. Tanji N; Tanji K; Kambham N; Markowitz GS; Bell A; D'agati VD Hum Pathol; 2001 Jul; 32(7):734-40. PubMed ID: 11486172 [TBL] [Abstract][Full Text] [Related]
37. Prediction of nephrotoxicant action and identification of candidate toxicity-related biomarkers. Thukral SK; Nordone PJ; Hu R; Sullivan L; Galambos E; Fitzpatrick VD; Healy L; Bass MB; Cosenza ME; Afshari CA Toxicol Pathol; 2005; 33(3):343-55. PubMed ID: 15805072 [TBL] [Abstract][Full Text] [Related]
38. PPAR-alpha ligand ameliorates acute renal failure by reducing cisplatin-induced increased expression of renal endonuclease G. Li S; Basnakian A; Bhatt R; Megyesi J; Gokden N; Shah SV; Portilla D Am J Physiol Renal Physiol; 2004 Nov; 287(5):F990-8. PubMed ID: 15280156 [TBL] [Abstract][Full Text] [Related]
39. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Jang KJ; Mehr AP; Hamilton GA; McPartlin LA; Chung S; Suh KY; Ingber DE Integr Biol (Camb); 2013 Sep; 5(9):1119-29. PubMed ID: 23644926 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of putative biomarkers of nephrotoxicity after exposure to ochratoxin a in vivo and in vitro. Rached E; Hoffmann D; Blumbach K; Weber K; Dekant W; Mally A Toxicol Sci; 2008 Jun; 103(2):371-81. PubMed ID: 18308701 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]