These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 24495290)
1. Investigation of the influence of external factors on the conformational dynamics of rhodopsin-like receptors by means of molecular dynamics simulation. Novikov GV; Sivozhelezov VS; Kolesnikov SS; Shaitan KV J Recept Signal Transduct Res; 2014 Apr; 34(2):104-18. PubMed ID: 24495290 [TBL] [Abstract][Full Text] [Related]
2. [Influence of the orthosteric ligands binding on the conformational dynamics of the B-2-adrenergic receptor by means of essential dynamics sampling simulation]. Novikov GV; Sivozhelezov VS; Shaitan KV Mol Biol (Mosk); 2014; 48(3):463-79. PubMed ID: 25831896 [TBL] [Abstract][Full Text] [Related]
3. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor. Goetz A; Lanig H; Gmeiner P; Clark T J Mol Biol; 2011 Dec; 414(4):611-23. PubMed ID: 22037586 [TBL] [Abstract][Full Text] [Related]
5. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor. Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery. Huber T; Menon S; Sakmar TP Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775 [TBL] [Abstract][Full Text] [Related]
7. Ligand induced change of β2 adrenergic receptor from active to inactive conformation and its implication for the closed/open state of the water channel: insight from molecular dynamics simulation, free energy calculation and Markov state model analysis. Bai Q; Pérez-Sánchez H; Zhang Y; Shao Y; Shi D; Liu H; Yao X Phys Chem Chem Phys; 2014 Aug; 16(30):15874-85. PubMed ID: 24962153 [TBL] [Abstract][Full Text] [Related]
8. Modeling GPCR active state conformations: the β(2)-adrenergic receptor. Simpson LM; Wall ID; Blaney FE; Reynolds CA Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626 [TBL] [Abstract][Full Text] [Related]
9. Active state-like conformational elements in the beta2-AR and a photoactivated intermediate of rhodopsin identified by dynamic properties of GPCRs. Han DS; Wang SX; Weinstein H Biochemistry; 2008 Jul; 47(28):7317-21. PubMed ID: 18558776 [TBL] [Abstract][Full Text] [Related]
10. Activation of the ghrelin receptor is described by a privileged collective motion: a model for constitutive and agonist-induced activation of a sub-class A G-protein coupled receptor (GPCR). Floquet N; M'Kadmi C; Perahia D; Gagne D; Bergé G; Marie J; Banères JL; Galleyrand JC; Fehrentz JA; Martinez J J Mol Biol; 2010 Jan; 395(4):769-84. PubMed ID: 19782690 [TBL] [Abstract][Full Text] [Related]
11. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site. Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703 [TBL] [Abstract][Full Text] [Related]
12. The role of conformational ensembles in ligand recognition in G-protein coupled receptors. Niesen MJ; Bhattacharya S; Vaidehi N J Am Chem Soc; 2011 Aug; 133(33):13197-204. PubMed ID: 21766860 [TBL] [Abstract][Full Text] [Related]
13. Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation. Bhattacharya S; Hall SE; Li H; Vaidehi N Biophys J; 2008 Mar; 94(6):2027-42. PubMed ID: 18065472 [TBL] [Abstract][Full Text] [Related]
14. Identifying conformational changes of the beta(2) adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators. Reynolds KA; Katritch V; Abagyan R J Comput Aided Mol Des; 2009 May; 23(5):273-88. PubMed ID: 19148767 [TBL] [Abstract][Full Text] [Related]
15. Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies. Yuzlenko O; Kieć-Kononowicz K J Comput Chem; 2009 Jan; 30(1):14-32. PubMed ID: 18496794 [TBL] [Abstract][Full Text] [Related]
16. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741 [TBL] [Abstract][Full Text] [Related]
17. Investigation of allosteric coupling in human β2-adrenergic receptor in the presence of intracellular loop 3. Ozgur C; Doruker P; Akten ED BMC Struct Biol; 2016 Jul; 16(1):9. PubMed ID: 27368374 [TBL] [Abstract][Full Text] [Related]
18. Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation. Zhu Y; Yuan Y; Xiao X; Zhang L; Guo Y; Pu X J Mol Model; 2014 Nov; 20(11):2491. PubMed ID: 25342155 [TBL] [Abstract][Full Text] [Related]
19. Conformational dynamics of the estrogen receptor alpha: molecular dynamics simulations of the influence of binding site structure on protein dynamics. Celik L; Lund JD; Schiøtt B Biochemistry; 2007 Feb; 46(7):1743-58. PubMed ID: 17249692 [TBL] [Abstract][Full Text] [Related]