These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24495431)

  • 1. Characterization of the vocal fold vertical stiffness in a canine model.
    Oren L; Dembinski D; Gutmark E; Khosla S
    J Voice; 2014 May; 28(3):297-304. PubMed ID: 24495431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Young's modulus of canine vocal fold cover layers.
    Chhetri DK; Rafizadeh S
    J Voice; 2014 Jul; 28(4):406-10. PubMed ID: 24491497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Vertical Stiffness Gradient on the Maximum Divergence Angle.
    Farbos de Luzan C; Maddox A; Oren L; Gutmark E; Howell RJ; Khosla SM
    Laryngoscope; 2021 Jun; 131(6):E1934-E1940. PubMed ID: 33382114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Young's modulus of vocal folds by indentation.
    Chhetri DK; Zhang Z; Neubauer J
    J Voice; 2011 Jan; 25(1):1-7. PubMed ID: 20171829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Indentation Mapping of Vocal Fold Structure and Cover Properties Across Species.
    Dion GR; Lavoie JF; Coelho P; Amin MR; Branski RC
    Laryngoscope; 2019 Jan; 129(1):E26-E31. PubMed ID: 30408175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of vocal fold vertical stiffness variation on voice production.
    Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2016 Oct; 140(4):2856. PubMed ID: 27794296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraglottal geometry and velocity measurements in canine larynges.
    Oren L; Khosla S; Gutmark E
    J Acoust Soc Am; 2014 Jan; 135(1):380-8. PubMed ID: 24437778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model.
    Oren L; Khosla S; Gutmark E
    J Voice; 2021 Jan; 35(1):69-76. PubMed ID: 31387765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocal fold elasticity in the pig, sheep, and cow larynges.
    Alipour F; Jaiswal S; Vigmostad S
    J Voice; 2011 Mar; 25(2):130-6. PubMed ID: 20137893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds.
    Mendelsohn AH; Zhang Z
    J Acoust Soc Am; 2011 Nov; 130(5):2961-8. PubMed ID: 22087924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element study on the cause of vocal fold vertical stiffness variation.
    Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2017 Apr; 141(4):EL351. PubMed ID: 28464635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional biomechanical properties of human vocal folds: parameter optimization of a numerical model to match in vitro dynamics.
    Yang A; Berry DA; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2012 Feb; 131(2):1378-90. PubMed ID: 22352511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of vocal folds elastic properties for continuum modeling.
    Alipour F; Vigmostad S
    J Voice; 2012 Nov; 26(6):816.e21-9. PubMed ID: 22921299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Continuous Elastic Parameters of Porcine Vocal Folds.
    Burks G; De Vita R; Leonessa A
    J Voice; 2020 Jan; 34(1):1-8. PubMed ID: 30446272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraglottal pressure distribution computed from empirical velocity data in canine larynx.
    Oren L; Khosla S; Gutmark E
    J Biomech; 2014 Apr; 47(6):1287-93. PubMed ID: 24636531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.