These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24495925)

  • 1. Bonding of synthetic hydrogels with fibrin as the glue to engineer hydrogel-based biodevices.
    Nagamine K; Okamoto K; Kaji H; Nishizawa M
    J Biosci Bioeng; 2014 Jul; 118(1):94-7. PubMed ID: 24495925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protocol for rheological characterization of hydrogels for tissue engineering strategies.
    Zuidema JM; Rivet CJ; Gilbert RJ; Morrison FA
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1063-73. PubMed ID: 24357498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suitability of Different Natural and Synthetic Biomaterials for Dental Pulp Tissue Engineering.
    Galler KM; Brandl FP; Kirchhof S; Widbiller M; Eidt A; Buchalla W; Göpferich A; Schmalz G
    Tissue Eng Part A; 2018 Feb; 24(3-4):234-244. PubMed ID: 28537502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ex vivo characterization of a novel tissue-like cross-linked fibrin-agarose hydrogel for tissue engineering applications.
    Campos F; Bonhome-Espinosa AB; García-Martínez L; Durán JD; López-López MT; Alaminos M; Sánchez-Quevedo MC; Carriel V
    Biomed Mater; 2016 Sep; 11(5):055004. PubMed ID: 27680194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrin in tissue engineering.
    Eyrich D; Göpferich A; Blunk T
    Adv Exp Med Biol; 2006; 585():379-92. PubMed ID: 17120796
    [No Abstract]   [Full Text] [Related]  

  • 7. Injectable PAMAM/ODex double-crosslinked hydrogels with high mechanical strength.
    Li S; Wang J; Song L; Zhou Y; Zhao J; Hou X; Yuan X
    Biomed Mater; 2016 Dec; 12(1):015012. PubMed ID: 27934783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human amnion extracellular matrix derived bioactive hydrogel for cell delivery and tissue engineering.
    Ryzhuk V; Zeng XX; Wang X; Melnychuk V; Lankford L; Farmer D; Wang A
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():191-202. PubMed ID: 29407148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contraction of fibrin-derived matrices and its implications for in vitro human skin bioengineering.
    Montero A; Acosta S; Hernández R; Elvira C; Jorcano JL; Velasco D
    J Biomed Mater Res A; 2021 Apr; 109(4):500-514. PubMed ID: 32506782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-compatible and adhesive polyion complex hydrogels composed of amphiphilic phospholipid polymers.
    Kimura M; Takai M; Ishihara K
    J Biomater Sci Polym Ed; 2007; 18(5):623-40. PubMed ID: 17550663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new biological glue from gelatin and poly (L-glutamic acid).
    Otani Y; Tabata Y; Ikada Y
    J Biomed Mater Res; 1996 Jun; 31(2):158-66. PubMed ID: 8731204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatically cross-linked hydrogels and their adhesive strength to biosurfaces.
    Hu BH; Messersmith PB
    Orthod Craniofac Res; 2005 Aug; 8(3):145-9. PubMed ID: 16022716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration.
    Marcinczyk M; Elmashhady H; Talovic M; Dunn A; Bugis F; Garg K
    Biomaterials; 2017 Oct; 141():233-242. PubMed ID: 28697464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro cyto-biocompatibility and cell detachment of temperature-sensitive dextran hydrogel.
    Xiao F; Chen L; Xing RF; Zhao YP; Dong J; Guo G; Zhang R
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):13-8. PubMed ID: 19181494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering.
    Park KH; Kim H; Moon S; Na K
    J Biosci Bioeng; 2009 Dec; 108(6):530-7. PubMed ID: 19914589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrin-polyurethane composites for articular cartilage tissue engineering: a preliminary analysis.
    Lee CR; Grad S; Gorna K; Gogolewski S; Goessl A; Alini M
    Tissue Eng; 2005; 11(9-10):1562-73. PubMed ID: 16259610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing silk hydrogel and its applications in biomedical materials.
    Wang HY; Zhang YQ
    Biotechnol Prog; 2015; 31(3):630-40. PubMed ID: 25740113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for systematically evaluating the hemostatic ability of hydrogels in vitro.
    Luo J; Lin L; Liao N; Zhang K; Liu C; Sun Y
    Biomed Mater Eng; 2017; 28(6):703-710. PubMed ID: 29171971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A defined heat pretreatment of gelatin enables control of hydrolytic stability, stiffness, and microstructural architecture of fibrin-gelatin hydrogel blends.
    Wachendörfer M; Schräder P; Buhl EM; Palkowitz AL; Ben Messaoud G; Richtering W; Fischer H
    Biomater Sci; 2022 Sep; 10(19):5552-5565. PubMed ID: 35969162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.